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Abstract. In this paper we consider an inverse coefficients problem for a quasilinear elliptic equation

of divergence form ∇ · ~C(x,∇u(x)) = 0, in a bounded smooth domain Ω. We assume that
−→
C (x, ~p) =

γ(x)~p+~b(x)|~p|2 +O(|~p|3), by expanding
−→
C (x, ~p) around ~p = 0. We give a reconstruction method for γ and

~b from the Dirichlet to Neumann map defined on ∂Ω.
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1. Introduction and statement of the main result

First of all, we set up a boundary value problem for a quasilinear elliptic equation of divergence form.
Let Ω ⊂ Rn ( n ≥ 3) be a bounded open set with smooth boundary ∂Ω. We consider the following
quasilinear elliptic boundary value problem (BVP){

∇ ·
−→
C (x,∇u(x)) = 0, x ∈ Ω,

u(x) = εf(x), x ∈ ∂Ω,
(1.1)

where
−→
C (x,∇u(x)) is given by

−→
C (x,∇u(x)) := γ(x)∇u(x) + |∇u(x)|2~b(x) +

−→
R (x,∇u(x)) (1.2)

with γ,~b ∈ C∞(Ω) and, for vector q := (q1, q2, · · · , qn) ∈ Rn,
−→
R (x, q) ∈ C∞(Ω ×H) with H := {q ∈ Rn :

|q| ≤ h} for a constant h > 0. Throughout this paper we assume γ(x) ≥ C1 for some constant C1 > 0 and
there exists a constant C2 > 0 such that

|∂αq ∂βx
−→
R (x, q)| ≤ C2|q|3−|α| (1.3)

holds for all (x, q) ∈ Ω×H and multi-indices α, β with |α| ≤ 3.

Under the above setup, we have the following well-posedness result for the above (BVP) which is proved
in [5].

Theorem 1.1. ([5]) Let n < p < ∞. There exist ε and δ < h/2 such that for any f ∈ W 2−1/p, p(∂Ω)
satisfying ‖f‖W 2−1/p, p(∂Ω) < ε, the following boundary value problem{

∇ ·
−→
C (x,∇u(x)) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,

admits a unique solution u such that ‖u‖W 2,p(Ω) < δ. Moreover, there exists C3 > 0 independent of f such
that

‖u‖W 2,p(Ω) ≤ C3‖f‖W 2−1/p,p(∂Ω). (1.4)

Here W 2,p(Ω) and W 2−1/p, p(∂Ω) are the usual Lp-Sobolev spaces of order 2 and 2− 1/p in Ω and on ∂Ω,
respectively.
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Based on the well-posedness of (BVP), we define the Dirichlet to Neumann (DN in short) map Λ−→
C

(εf)
by

Λ−→
C

(εf) := ν(x) ·
−→
C (x,∇u)|∂Ω, f ∈W 2−1/p, p(∂Ω), (1.5)

where u is solution to the (BVP) and ν is the unit normal vector of ∂Ω directed into the exterior of Ω.
Now we state our inverse problem.

Inverse problem: Identify γ and ~b from the knowledge of DN map Λ−→
C

.

Remark 1.2. The above (BVP) is the scalar version of displacement boundary value problem for elasticity

equation and~b’s correspond to higher order tensors of rank 6. In material science these higher order tensors
are becoming important due to the demand to investigate physical phenomena in a smaller scale (see for
example [6] using [1] as a guide book for nonlinear elasticity). As a consequence we need to recover these
higher order tensors by solving some inverse problems. Hence we can consider our inverse problem as a
toy model to reconstruct tensors up to rank 6.

Concerning this inverse problem, its uniqueness is already known in ([5]). Then a next very natural

question is about giving a reconstruction for identifying these γ and ~b.

Our main result in this paper is the following.

Theorem 1.3. Knowing the DN map Λ−→
C

, we can have point-wise reconstruction for the linear part γ and

the coefficient ~b of the quadratic part of
−→
C . (The details of the reconstruction method will be given in the

proof of this theorem see Sections 2 and 3).

Let us locate our results among the well known results on inverse problems for nonlinear scalar elliptic
equations using the DN map as their measured data to identify non-linearities or extract some information
about them. The first important thing to say is that, as far as we know, the known results are about
uniqueness. The major nonlinear scalar equations which have been studied up to now are of the following
forms

(i) −∆u+ a(x, u) = 0 ([3], [2],[11]),
(ii) −∆u+ b(u,∇u) = 0 ([4]),

(iii) ∇ · (c(x, u)∇u) = 0 ([9],[10]),

(v) ∇ · (
−→
C (x,∇u)) = 0 ([5])

in Ω, with some appropriate conditions on the non-linearities a(x, u), b(x,∇u), c(x, u),
−→
C (x,∇u), and we

have indicated the contributing papers in the brackets. It should be remarked here that the uniqueness
for (ii) was even given with localized DN map. The proof in [5] had one insufficient part which can be
corrected by the argument given in this paper. Our main result can be considered as a further development

of [5], giving the reconstruction of the linear part and quadratic nonlinear part of
−→
C (x,∇u).

The rest of this paper is organized as follows. In Section 2 we will discuss the ε-expansion using which
the DN map can be linearized. The linearization of DN map is the DN map for the conductivity equation
with conductivity γ. Then by the famous result [7] we reconstruct γ and hence the remaining task is to

reconstruct ~b. This is done in Section 3.

2. ε-expansion of the solution to (BVP)

To prove the theorem, we will use the following ε-expansion of solution u to the (BVP)

uf (x) = εuf1(x) + ε2uf2(x) +O(ε3), (2.1)
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where uf1 and uf2 are given as follows. By substituting ∇uf (x) = ε∇uf1(x) + ε2∇uf2(x) +O(ε3) in (1.2), we
get

−→
C (x,∇xuf ) = γ(x)∇xuf (x) + |∇uf (x)|2~b(x) +

−→
R (x,∇uf (x))

= εγ(x)∇uf1(x) + ε2
(
γ(x)∇uf2(x) + |∇uf1(x)|2~b(x)

)
+O(ε3).

Now comparing the various powers of ε on both sides, uf1 is the solution to{
Lγu

f (x) := ∇ ·
(
γ(x)∇uf1(x)

)
= 0, x ∈ Ω,

uf1(x) = f(x), x ∈ ∂Ω,
(2.2)

and uf2 solves {
∇ ·
(
γ(x)∇uf2(x)

)
+∇ ·

(
~b(x)|∇uf1(x)|2

)
= 0, x ∈ Ω,

uf2(x) = 0, x ∈ ∂Ω.
(2.3)

As for the justification of the above expansion, we refer to [5].
Next, the ε-expansion of the DN map is

Λ−→
C

(εf)
∣∣∣
∂Ω

= ε
(
γ(x)∂νu

f
1(x)

) ∣∣∣
∂Ω

+ ε2
(
γ(x)∂νu

f
2(x) + ν(x) ·~b(x)|∇xuf1(x))|2

) ∣∣∣
∂Ω

+O(ε3)

=: εg1(x) + ε2g2(x) +O(ε3).
(2.4)

Hence we can know

Λγ(f) :=
(
γ(x)∂νu

f
1(x)

)∣∣∣
∂Ω

= g1(x)

and (
γ(x)∂νu

f
2(x) + ν(x) ·~b(x)|∇xuf1(x))|2

)∣∣∣
∂Ω

= g2(x).

Note that Λγ is the DN map for (2.2). Also, since W 2−1/p, p(∂Ω) is dense in the L2-Sobolev space H1/2(∂Ω)

of order 1/2 on ∂Ω and the boundary value problem 2.2 with Dirichlet data f ∈ H1/2(∂Ω) is well-posed

in L2-Sobolev space H1(Ω) of order 1 in Ω, Λγ(f) can be defined for f ∈ H1/2(∂Ω). It is well-known from
the work of [7] that γ can be reconstructed from the knowledge of Λγ . Once knowing γ(x), we also know

uf1(x) in Ω for every given f ∈ H1/2(∂Ω).
For readers’ convenience, we will briefly give a summary of the reconstruction given in [7]. It consists of

the following five steps:

Step 1. By the determination at the boundary, reconstruct γ and ∇γ at ∂Ω (see for example [8]).

Step 2. Compute the DN map Λ̃q : H1/2(∂Ω) → H−1/2(∂Ω) defined by Λ̃qf = ∂νv
∣∣
∂Ω

, where v ∈ H1(Ω)

is the solution to boundary value problem: (∆ − q)v = 0 in Ω, v
∣∣
∂Ω

= g ∈ H1/2(∂Ω) with q =

(∆
√
γ)/
√
γ, and H−1/2(∂Ω) is the dual space of H1/2(∂Ω).

Step 3. For any fixed ξ ∈ Rn, let ζ ∈ Cn be such that ζ · ζ = 0, (ξ + ζ) · (ξ + ζ) = 0 and define t(ξ, ζ) by

t(ξ, ζ) := 〈(Λ̃q − Λ̃0)e−ix·(ζ+ξ)
∣∣
∂Ω
, (2−1I + SζΛ̃q −Bζ)−1eix·ζ

∣∣
∂Ω
〉,

where Sζ , Bζ are the traces of single layer and double layer potentials of Gζ := eix·ζ(∆ + 2iζ ·∇)−1

to ∂Ω, respectively. Here we have denoted Λ̃q when q = 0 by Λ̃0.
Step 4. Compute the Fourier transform of q extended by 0 outside Ω by the inversion formula:

lim
|ζ|→∞

t(x, ζ) =

∫
Ω
e−x·ξq(x) dx.

Step 5. Solve (∆− q)z = 0 in Ω, z
∣∣
∂Ω

= γ1/2
∣∣
∂Ω

to get γ = z2.
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3. Reconstruction of ~b(x)

Based on what we have obtained in the previous section, in this section we will give a reconstruction for

identifying ~b(x). Let us start this by deriving an integral identity. Take any solution w of Lγw = 0 in Ω,

with enough regularity, and let βw(x) := γ−
1
2 (x)χΩ

~b(x) · ∇w(x), where χΩ is the characteristic function of
Ω. By multiplying (2.3) by w and integrating over Ω, we have∫

βw(x)γ
1
2 (x)|∇uf1(x)|2dx =

∫
∂Ω

(
γ(x)∂νu

f
2(x) + ν(x) ·~b(x)|∇xuf1(x))|2

)
w(x)dSx . (3.1)

Here and hereafter
∫
dx denotes the integration over Rn and dSx denotes the standard measure on ∂Ω.

We will polarize (3.1) as follows. Consider u2(x) = uf+g
2 (x) − uf−g2 (x). Then from equations (2.3) and

(3.1), we get

4

∫
βw(x)γ

1
2 (x)∇uf1(x) · ∇ug1(x)dx =

∫
∂Ω

(
γ(x)∂νu2(x) + 4ν(x) ·~b(x)∇xuf1(x) · ∇ug1(x)

)
w(x)dSx.

(3.2)

The right hand side of equation (3.2) is known for all f and g.

We can choose uf1 and ug1 to be complex geometric optics solutions

uf1(x) = v1(x) = eζ1·xγ−
1
2 (x) (1 + r1(x, ζ1)) , and ug1(x) = v2(x) = eζ2·xγ−

1
2 (x) (1 + r2(x, ζ2)) (3.3)

where ri, i = 1, 2 satisfy the equations

4ri + ζi · ∇ri − qri = q in Rn, q =
4γ

1
2

γ
1
2

, (3.4)

and the estimate

‖ri‖Hσ(Ω) ≤
C

|ζi|
, for any σ >

n

2
. (3.5)

The expressions for uf1 and ug1 in (3.3) and the estimate in (3.5) follow from the work of [12]. Now let
ξ ∈ Rn be any vector and choose η, k ∈ Sn−1 such that

k · ξ = k · η = ξ · η = 0.

Using these, define ζ1, ζ2 ∈ Cn by

ζ1 := rk − i
(
ξ

2
+ sη

)
, ζ2 := −rk − i

(
ξ

2
− sη

)
, (3.6)

where r and s are chosen such that

r2 =
|ξ|2

4
+ s2.

With this, we have

ζi · ζi = 0, ζ1 + ζ2 = −iξ.

Note that

∇vi = eζi·x
[
ζiγ
− 1

2 (1 + ri) +∇(γ−
1
2 )(1 + ri) + γ−

1
2∇ri

]
,
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so

∇v1 · ∇v2 = e−iξ·x
[
γ−1ζ1 · ζ2 + γ−

1
2 (ζ1 + ζ2) · ∇(γ−

1
2 )(1 + r1)(1 + r2)

+|∇(γ−
1
2 )|2 + γ−1(ζ1 · ∇r2 + ζ2 · ∇r1)

]
+O(s−1)

= e−iξ·x
[(
−1

2
|ξ|2
)
γ−1 − iγ−

1
2 ξ · ∇(γ−

1
2 ) + |∇(γ−

1
2 )|2 + γ−1(ζ1 · ∇r2 + ζ2 · ∇r1)

]
+O(s−1).

Consider the the term

ζ1 · ∇r2 = (−iξ − ζ2) · ∇r2 = −ξ · ∇r2 − q +4r2 − qr2 = −q +O(s−1).

Then

∇v1 · ∇v2 = e−iξ·x
[(
−1

2
|ξ|2
)
γ−1 + iγ−

3
2 ξ · ∇(γ

1
2 ) + γ−2|∇(γ

1
2 )|2 − 2qγ−1

]
+O(s−1).

Taking the limit s→∞ in (3.2), we get∫
e−iξ·xβw

[(
−1

2
|ξ|2
)
γ−

1
2 + iγ−1ξ · ∇(γ

1
2 ) + γ−

3
2 |∇(γ

1
2 )|2 − 2qγ−

1
2

]
dx = known.

It follows that
1

2
4(γ−

1
2βw) +∇ ·

(
γ−1∇(γ

1
2 )βw

)
+
(
γ−

3
2 |∇(γ

1
2 )|2 − 2qγ−

1
2

)
βw = known,

in Rn, in the sense of distributions, and where we have extended γ so that it is smooth in Rn and the
support of γ − 1 is compact. Since

4(γ−
1
2βw) = γ−

1
24βw − 2γ−1∇(γ

1
2 ) · ∇βw +

(
2γ−

3
2 |∇(γ

1
2 )|2 − γ−14(γ

1
2 )
)
βw

and

∇ ·
(
γ−1∇(γ

1
2 )βw

)
= γ−1∇(γ

1
2 ) · ∇βw +

(
γ−14(γ

1
2 )− 2γ−

3
2 |∇γ

1
2 )|2

)
βw,

we can conclude that βw satisfies

4βw − 3qβw = known in Rn (3.7)

in the sense of distributions.
Next we will show that βw can be known. Since we do know that βw does exist and satisfies (3.7), we

only need to show such βw is unique. For this it is enough to show that if f ∈ L2(Rn), with compact
support, satisfies

4f − 3qf = 0 in Rn,
then f = 0. To start proving this, note that by the interior regularity of solutions of elliptic equations,
f ∈ C∞(Rn). Further, by recalling f is compactly supported, we have f ∈ C∞0 (Rn).

Now by the limiting absorption principle, for any fixed δ > 1/2 and any given ψ ∈ L2
δ(Rn) there exists

a unique φ ∈ L2
−δ(Rn) such that

4ϕ− 3qϕ = ψ in Rn,
where

L2
±δ(Rn) := {η ∈ L2

loc(Rn) : ‖η‖±δ :=
( ∫

Rn
(1 + |x|2)±δ|η(x)|2 dx

)1/2
<∞}

(see Theorem 3.6 in page 413 of [13] for the details). This implies

〈ψ, f〉 = 〈∆φ− 3qφ, f〉 = 〈φ,∆f − 3qf〉 = 0.

Then, since L2
δ(Rn) is dense in L2

loc(Rn), we immediately have f = 0. Summing up we have obtained the
following

γ
1
2βw = ~b · ∇w = known in Ω for all w solving Lγw = 0 in Ω with enough regularity. (3.8)
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Now let {wj}1≤j≤n be solutions of Lγwj = 0 in Ω, with enough regularity, such that {∇wj(x)}1≤j≤n are
linearly independent for a.e. every x ∈ Ω (see Lemma 3.1 of [5] for such {wj}1≤j≤n). Therefore, we have

that ~b(x) ·∇wj(x) is known for all 1 ≤ j ≤ n and x ∈ Ω. We will denote this known value by Fwj (x). Thus
we have the following system of equations

∂w1
∂x1

∂w1
∂x2

· · · · · · ∂w1
∂xn

∂w2
∂x1

∂w2
∂x2

· · · · · · ∂w2
∂xn

∂w3
∂x1

∂w3
∂x2

· · · · · · ∂w3
∂xn

...
...

...
...

∂wn
∂x1

∂wn
∂x2

· · · · · · ∂wn
∂xn





b1(x)

b2(x)

b3(x)

...

bn(x)


=



Fw1(x)

Fw2(x)

Fw3(x)

...

Fwn(x)


, x ∈ Ω.

Since the matrix

A(x) :=

((
∂wi
∂xj

))
1≤i,j≤n

is invertible for each x ∈ Ω, therefore we obtain that

~b(x) = A−1(x)~F (x), x ∈ Ω,

where

~F (x) :=



Fw1(x)

Fw2(x)

Fw3(x)

...

Fwn(x)


.

This gives the reconstruction for ~b in Ω.
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