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1. Introduction

Let Ω ⊂ Rn for n ≥ 2 be a bounded open set with C2 boundary ∂Ω. For T > 0, let Q :=
(0, T ) × Ω and we denote its lateral boundary by Σ := (0, T ) × ∂Ω. Throughout this article,
Hs(X) will denote the space of vector valued functions defined on X with each of its component
belongs to Hs(X). Similar notations will be used for other vector valued function spaces as well
such as Ck(X), L2(X) etc. Let q(t, x) := (qij(t, x))1≤i,j≤n, is a time-dependent matrix valued

potential with each qij ∈ W 1,∞(Q) and we write this as q ∈ W 1,∞(Q). For a displacement vector

~u(t, x) := (u1(t, x), u2(t, x), · · · , un(t, x))T and a matrix valued potential q(t, x), we denote by Lq
the following operator

Lq~u(t, x) :=


�u1(t, x) +

∑n
j=1 q1j(t, x)uj(t, x)

�u2(t, x) +
∑n

j=1 q2j(t, x)uj(t, x)
...

�un(t, x) +
∑n

j=1 qnj(t, x)uj(t, x)

 , (t, x) ∈ Q (1)

where � := ∂2
t − ∆x, denotes the wave operator. Now we consider the following initial boundary

value problem: 
Lq~u(t, x) = ~0, (t, x) ∈ Q
~u(0, x) = ~φ, ∂t~u(0, x) = ~ψ(x), x ∈ Ω

~u(t, x) = ~f(t, x), (t, x) ∈ Σ.

(2)

Using Theorem 2.1 in §2, if for q ∈ L∞(Q), ~φ ∈ H1(Q), ~ψ ∈ L2(Ω) and ~f ∈ H1(Σ) is such that
~f(0, x) = ~φ(x) for x ∈ ∂Ω, then there exists a unique solution ~u of (2) satisfying the following

~u ∈ C1
(
[0, T ]; L2(Ω)

)
∩C

(
[0, T ]; H1(Ω)

)
and ∂ν~u ∈ L2(Σ),

where ∂ν~u represents the component-wise normal derivative of vector ~u, that is ∂ν~u := (∂νu1, · · · , ∂νun).
1
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Based on this we define the continuous linear input-output operator Λq : H1(Ω)×L2(Ω)×H1(Σ)→
H1(Ω)× L2(Σ) by

Λq

(
~φ, ~ψ, ~f

)
:=
(
~u(T, ·), ∂ν~u|Σ

)
. (3)

In this paper we consider the inverse problem of determining time-dependent potential q from
the knowledge of input-output operator Λq measured on a subset of ∂Q. Our goal is to prove a
uniqueness result for determining q from the partial information of Λq measured on ∂Q (see Theorem
3.1 below in §3 for more details).

Uniqueness issues for determining the coefficients in hyperbolic inverse problems are of great
interest in last few decades. There have been extensive works in the literature regarding the iden-
tification of coefficients from boundary measurements involving the single wave equation while
concerning the coefficients identification problems for the system of hyperbolic equations, not many
results are available in literature. To the best of our knowledge the problem of determining the
time-independent matrix potential appearing in a one dimensional wave equation from boundary
measurement is first studied in [2] and recently this result has been extended in [18] to the deter-
mination of matrix valued potential using finite number of boundary measurements. Following the
ideas used in [8], authors in [2] showed that the time-independent matrix potential can be recovered
from the boundary measurements. Eskin and Ralston in [11] studied the problem of determining
the first order as well as zeroth order time independent matrix valued perturbations in hyperbolic
equations and proved the uniqueness up to a gauge invariance (see [12]) from the full boundary
measurements. The gauge invariance appears only because of first (or higher) order perturbations
and hence in the present work there will be no gauge invariance since we are only considering the
zeroth order perturbation. Hence one can hope to recover the matrix potential q uniquely for the
above system of equation (2) from the boundary measurements and this is the question we study
in the current article. Next we mention the works related to the single wave equation which are
closely related to the problem we study in this article. Unique determination for time indepen-
dent scalar potential from boundary data appearing in (2) is initially studied by Bukhgĕim and
Klibanov in [9] (see also [33]). In [33] uniqueness was proved using the geometric optics solutions
inspired by the work of Sylvester and Uhlmann [39] for elliptic problem. Rakesh and Ramm in [35]
considered the unique determination of time-dependent scalar potential and they proved that the
potential can be determined uniquely in some subset of Q from the knowledge of the Dirichlet to
Neumann map measured on Σ. In [35] the wave equation with time-dependent potential in R×Ω is
considered and they proved the uniqueness result for determining the coefficient from the Dirichlet
to Neumann map measured on R× ∂Ω. For finite time domain Q the problem for determining the
time-dependent potential was studied by [22] where uniqueness result was proved using informations
of the solutions at initial and final time in addition to the Dirichlet to Neumann map. Recently
Kian in [26] proved that the uniqueness considered in [22] can be shown using the less information
than that of [22]. Using the Carleman estimate together with geometric optic solutions Kian in [26]
established the uniqueness for scalar time dependent potential using the informations of solution
measured on a suitable subset of ∂Q. For anisotropic wave equation the unique determination for
the time-dependent scalar potential from partial boundary data has been considered in [28]. For
more works related to the determination of coefficients appearing in the single wave equation from
boundary measurements, we refer to [1, 3, 4, 5, 6, 13, 24, 25, 26, 37, 38] and references therein.

In this paper we consider the unique determination of time-dependent matrix valued potential
q(t, x) appearing in (2) from the partial boundary data. Our work can be seen as an extension of the
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work of [26] who considered the aforementioned problem for determining the scalar time-dependent
potential q appearing in (2).

The paper is organized as follows. In §2 we prove the well-posedness of the forward problem for
Equation (2). In §3, we state the main result of the article. §4 is devoted to derive the Carleman
estimates which will be used to prove the existence of geometric optics (GO) solutions and in §5,
we construct the required GO solutions. Finally in §6, we prove the main theorem 3.1 of the article.

2. Preliminary result

In this section we prove the existence and uniqueness for the initial boundary value problem. In
particular we prove the following theorem:

Theorem 2.1. Let q ∈ W 1,∞(Q) be a time-dependent matrix potential. Suppose ~φ ∈ H1(Ω),
~ψ ∈ L2(Ω) and ~f ∈ H1(Σ) is such that ~f(0, x) = ~φ(x) for x ∈ ∂Ω. Then there exists a unique
solution ~u to (2) satisfying the following

~u ∈ C1
(
[0, T ];L2(Ω)

)
∩C

(
[0, T ];H1(Ω)

)
and ∂ν~u ∈ L2(Σ).

Moreover, there exists a constant C > 0 depending only on q, T and Ω such that

‖∂ν~u‖L2(Σ) + ‖~u‖H1(Q) ≤ C
(
‖~φ‖H1(Ω) + ‖~ψ‖L2(Ω) + ‖~f‖L2(Σ)

)
(4)

holds.

Proof. Let us write the solution ~u to (2) into two terms as ~u(t, x) := ~v(t, x) + ~w(t, x) where ~v is
solution to 

∂2
t ~v(t, x)−∆x~v(t, x) = ~0, (t, x) ∈ Q
~v(0, x) = ~φ(x), ∂t~v(0, x) = ~ψ(x), x ∈ Ω

~v(t, x) = ~f(t, x), (t, x) ∈ Σ

(5)

and ~w is solution to 
Lq ~w(t, x) = −q(t, x)~v(t, x), (t, x) ∈ Q
~w(0, x) = ∂t ~w(0, x) = ~0, x ∈ Ω

~w(t, x) = ~0, (t, x) ∈ Σ.

(6)

Since Equation (5) is a decoupled system of wave equations therefore following Theorem 2.30 in
[24] there exists a unique solution ~v(t, x) to (5) such that

~v ∈ C1
(
[0, T ]; L2(Ω)

)
∩C

(
[0, T ]; H1(Ω)

)
and ∂ν~v ∈ L2(Σ)

and ‖∂ν~v‖L2(Σ) + ‖~v‖H1(Q) ≤ C
(
‖~φ‖H1(Ω) + ‖~ψ‖L2(Ω) + ‖~f‖L2(Σ)

) (7)

holds for some constant C > 0 independent of ~v. Using Equation (7) and the fact that q ∈ W 1,∞(Q),
we have q~v ∈ L2(Q). Now following the arguments from [24, 30, 32] we prove the existence and
uniqueness for ~w solution to (6). We define the time-dependent bilinear form a(t; ·, ·) on H1

0(Ω) by

a(t;~h,~g) :=

∫
Ω

(
∇x
~h(x) · ∇x~g(x) + q(t, x)~h(x) · ~h(x)

)
dx, for ~h,~g ∈ H1

0(Ω). (8)
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Since ~h,~g are time-independent and q ∈ L∞(Q) therefore for each fixed ~h,~g ∈ H1
0(Ω) we have

a(t;~h,~g) ∈ L∞(0, T ). Also using the Cauchy-Schwartz inequality and the fact that q ∈ L∞(Q) we
get

|a(t;~h,~g)| ≤ C‖~h‖H1
0(Ω)‖~g‖H1

0(Ω) (9)

where constant C > 0 is independent of ~h and ~g. Next consider

|a(t;~h,~h)| =
∣∣∣ ∫

Ω

(
|∇x

~h(x)|2 + q(t, x)~h(x) · ~h(x)
)

dx
∣∣∣

≥ ‖∇x
~h‖2

L2(Ω) − ‖q‖L∞(Q)‖~h‖2
L2(Ω).

Choosing λ > ‖q‖L∞(Q) in above equation, we get

|a(t;~h,~h)|+ λ‖~h‖2
L2(Ω) ≥ α‖~h‖2

H1(Ω), for some constant α > 0. (10)

Combining Equations (8), (9) and (10), we get that t 7→ a(t;~h,~g) is continuous bilinear form for all
~h,~g ∈ H1

0(Ω). Also note that the principle part of a(t; ·, ·) given by

a(t;~h,~g) =

∫
Ω

∇x
~h(x) · ∇x~g(x)dx (11)

is anti-symmetric. Therefore using Theorem 8.1 together with Remark 8.1 of Chapter 3 in [30] (see
also [32]), we have that the initial boundary value problem given by (6) admits a unique solution
~w ∈ C1

(
[0, T ]; L2(Ω)

)
∩C

(
[0, T ]; H1(Ω)

)
and it satisfies the following estimate∫

Q

(
|~w(t, x)|2 + |∂t ~w(t, x)|2 + |∇x ~w(t, x)|2

)
dxdt ≤ C

(
‖~φ‖H1(Ω) + ‖~ψ‖L2(Ω) + ‖~f‖L2(Σ)

)
. (12)

Next we prove that ∂ν ~w ∈ L2(Σ). We follow the arguments similar to the one used in [31] for the
wave equation with scalar potential. Let ν(x) denote the outward unit normal to ∂Ω at x ∈ ∂Ω.
We extend this to Ω and denote the extended one by ν(x) itself. Now consider the following integral∫
Q

(T − t)Lq ~w(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt =

∫
Q

(T − t) ∂2
t ~w(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt

−
∫
Q

(T − t) ∆x ~w(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt+

∫
Q

(T − t) q(t, x)~w(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt

=
n∑
j=1

∫
Q

(T − t) ∂2
twj(t, x) (ν(x) · ∇xwj(t, x)) dxdt−

n∑
j=1

∫
Q

(T − t) ∆xwj(t, x) (ν(x) · ∇xwj(t, x)) dxdt

+
n∑

i,j=1

∫
Q

(T − t) qij(t, x)wj(t, x) (ν(x) · ∇xwj(t, x)) dxdt := A1 + A2 + A3
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where

A1 :=
n∑
j=1

∫
Q

(T − t) ∂2
twj(t, x) (ν(x) · ∇xwj(t, x)) dxdt

A2 := −
n∑
j=1

∫
Q

(T − t) ∆xwj(t, x) (ν(x) · ∇xwj(t, x)) dxdt

A3 :=
n∑

i,j=1

∫
Q

(T − t) qij(t, x)wj(t, x) (ν(x) · ∇xwi(t, x)) dxdt.

Using Equation (6), we have

A1 + A2 + A3 = −
∫
Q

(T − t)q(t, x)~v(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt. (13)

We simplify each of Aj for 1 ≤ j ≤ 3. Using integration parts, we have A1 is

A1 = −T
n∑
j=1

∫
Ω

∂twj(0, x) (ν(x) · ∇xwj(0, x)) dx+
n∑
j=1

∫
Q

∂twj(t, x) (ν(x) · ∇xwj(t, x)) dxdt

−
n∑
j=1

∫
Q

(T − t) ∂twj(t, x) (ν(x) · ∇x∂twj(t, x)) dxdt

= −T
∫
Ω

∂t ~w(0, x) · (ν(x) · ∇x ~w(0, x)) dx+

∫
Q

∂t ~w(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt

−
∫
Q

T − t
2
∇x ·

(
ν(x)|∂t ~w(t, x)|2

)
dxdt+

∫
Q

T − t
2
|∂t ~w(t, x)|2∇x · ν(x)dxdt.

Using the Gauss divergence theorem and the fact that ~w|Σ = ~w|t=0 = ∂t ~w|t=0 = 0, we get

A1 =

∫
Q

∂t ~w(t, x) · (ν(x) · ∇x ~w(t, x)) dxdt+

∫
Q

T − t
2
|∂t ~w(t, x)|2∇x · ν(x)dxdt. (14)
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Now using the integration by parts in the expression for A2, we have

A2 = −
n∑
j=1

∫
Q

(T − t) ∆xwj(t, x) (ν(x) · ∇xwj(t, x)) dxdt

= −
n∑
j=1

∫
Q

(T − t)
n∑

k,l=1

∂2
kwj(t, x)νl(x)∂lwj(t, x)dxdt

= −
n∑
j=1

∫
Q

(T − t)∇x · (∇xwj(t, x)ν(x) · ∇xwj(t, x)) dxdt−
∫
Q

T − t
2
∇x · ν(x)|∇x ~w(t, x)|2dxdt

+
n∑
j=1

∫
Q

(T − t)
n∑

k,l=1

∂kwj(t, x)∂kνl(x)∂lwj(t, x)dxdt+

∫
Q

T − t
2
∇x ·

(
ν(x)|∇x ~w(t, x)|2

)
dxdt.

Gauss divergence theorem and ~u|Σ = 0, gives

A2 = −
∫
Σ

T − t
2
|∂ν ~w(t, x)|2dSxdt+

n∑
j=1

∫
Q

(T − t)
n∑

k,l=1

∂kwj(t, x)∂kνl(x)∂lwj(t, x)dxdt

−
∫
Q

T − t
2
∇x · ν(x)|∇x ~w(t, x)|2dxdt

(15)

Finally using Equations (14), (15) and the Cauchy-Schwartz inequality in (13), we get∣∣∣ ∫
Σ

T − t
2
|∂ν ~w(t, x)|2dSxdt

∣∣∣ ≤ C

∫
Q

(
|~v(t, x)|2 + |~w(t, x)|2 + |∂t ~w(t, x)|2 + |∇x ~w(t, x)|2

)
dxdt.

Hence using (7) and (12) in the above equation, we get∣∣∣ ∫
Σ

T − t
2
|∂ν ~w(t, x)|2dSxdt

∣∣∣ ≤ C
(
‖~ψ‖L2(Ω) + ‖~f‖L2(Σ)

)
.

Thus, we have shown the following

~w ∈ C1
(
[0, T ]; L2(Ω)

)
∩C

(
[0, T ]; H1(Ω)

)
and ∂ν ~w ∈ L2(Σ)

and ‖∂ν ~w‖L2(Σ) + ‖~w‖H1(Q) ≤ C
(
‖~φ‖H1(Ω) + ‖~ψ‖L2(Ω) + ‖~f‖L2(Σ)

)
.

(16)

Now combining Equations (7) and (16), we get

~u ∈ C1
(
[0, T ]; L2(Ω)

)
∩C

(
[0, T ]; H1(Ω)

)
and ∂ν~u ∈ L2(Σ)

and ‖∂ν~u‖L2(Σ) + ‖~u‖H1(Q) ≤ C
(
‖~φ‖H1(Ω) + ‖~ψ‖L2(Ω) + ‖~f‖L2(Σ)

)
.

This completes the proof of Theorem 2.1. �

3. Statement of the main result

Before stating the main result of this article, we introduce some notation. Following [10], for fix
ω0 ∈ Sn−1 and define

∂Ω+,ω0 := {x ∈ ∂Ω : ν(x) · ω0 ≥ 0} , ∂Ω−,ω0 := {x ∈ ∂Ω : ν(x) · ω0 ≤ 0}
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where ν(x) is outward unit normal to ∂Ω at x ∈ ∂Ω. Corresponding to ∂Ω±,ω0 , we denote the lateral
boundary parts by Σ±,ω0 := (0, T ) × ∂Ω±,ω0 . We denote by F = (0, T ) × F ′ and G = (0, T ) × G′
where F ′ and G′ are small enough open neighbourhoods of ∂Ω+,ω0 and ∂Ω−,ω0 respectively in ∂Ω.

Now let ~u be the solution to Equation (2) with ~φ ∈ H1(Ω), ~ψ ∈ L2(Ω) and ~f ∈ H1(Σ) such

that ~f(0, x) = ~φ(x) for x ∈ ∂Ω. Next using Theorem 2.1, we can define our continuous linear

input-output operator Λ̃q : H1(Ω)× L2(Ω)×H1(Σ) → H1(Ω)× L2(G) given by

Λ̃q(~φ, ~ψ, ~f) =
(
~u|t=T , ∂ν~u|G

)
(17)

where ~u is the solution to (2). In this paper, our aim is to prove the following uniqueness result for

determining q from the knowledge of Λ̃q.

Theorem 3.1. Let q(1)(t, x) and q(2)(t, x) be two sets of potentials such that the components of each

q(i) are in W 1,∞(Q) for i = 1, 2. Let ~u(i) be solutions to (2) when q = q(i) and Λ̃q(i) for i = 1, 2 be

the input-output operators defined by (3) corresponding to ~u(i). If

Λ̃q(1)(~φ, ~ψ, ~f) = Λ̃q(2)(~φ, ~ψ, ~f), for (~φ, ~ψ, ~f) ∈ H1(Ω)× L2(Ω)×H1(Σ), (18)

then

q(1)(t, x) = q(2)(t, x), (t, x) ∈ Q.

To the best of our knowledge the problem considered here has not been studied and infact this
is the first result which deals with the determination of time-dependent matrix valued coefficients
appearing in hyperbolic partial differential equations from the boundary measurements. Theorem
3.1, can be proved by using the Carleman estimate together with constructing the geometric optics
solutions for the wave equation with matrix valued potential. For time dependent scalar potential
case this approach for hyperbolic inverse problems first appeared in [25, 26] and recently this
approach has been used in [7, 19, 27, 28, 29] for determining the coefficients in the single wave
equations. To prove Theorem 3.1, we follow the arguments similar to [7, 25, 26].

4. Carleman Estimate

The present section is devoted to deriving a Carleman estimate for (2) involving the boundary
terms and it will be used to control the boundary terms over subsets of the boundary where mea-
surements are not available. In order to state the Carleman estimate, first we will fix some notation.
For ~v = (v1, v2, v3, · · · · , vn)T ∈ H1(Q), we define the L2 norm of ~v by

‖~v‖L2(Q) :=

 n∑
j=1

∫
Q

|vj(t, x)|2dxdt

1/2

=

(
n∑
j=1

‖vj‖2
L2(Q)

)1/2

and

∇x~v := (∇xv1,∇xv2,∇xv3, · · · ,∇xvn)T and ω · ∇x~v := (ω · ∇xv1, ω · ∇xv2, · · · , ω · ∇xvn)T .
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Theorem 4.1. Let ϕ(t, x) := t+x ·ω, where ω ∈ Sn−1 is fixed and q ∈ L∞(Q). Then the Carleman
estimate

‖e−ϕ/h~u‖2
L2(Q) + h

(
e−ϕ/h∂νϕ∂ν~u, e

−ϕ/h∂ν~u
)
L2(Σ+,ω)

+ h
(
e−ϕ(T,·)/h∂t~u(T, ·), e−ϕ(T,·)/h∂t~u(T, ·)

)
L2(Ω)

≤ C

(
‖he−ϕ/hLq~u‖2

L2(Q) +
1

h

(
e−ϕ(T,·)/hu(T, ·), e−ϕ(T,·)/h~u(T, ·)

)
L2(Ω)

+ h
(
e−ϕ(T,·)/h∇x~u(T, ·), e−ϕ(T,·)/h∇x~u(T, ·)

)
L2(Ω)

+ h
(
e−ϕ/h (−∂νϕ) ∂ν~u, e

−ϕ/h∂ν~u
)
L2(Σ−,ω)

)
(19)

holds for all ~u ∈ C 2(Q) with

~u|Σ = 0, ~u|t=0 = ∂t~u|t=0 = 0,

and h small enough.

Proof. Define the conjugated operator �ϕ by

�ϕ := h2e−ϕ/h�eϕ/h. (20)

For ~v ∈ C2(Q), we have

�ϕ~v(t, x) = h2�~v(t, x) + 2h (∂t − ω · ∇x)~v(t, x) := P1~v(t, x) + P2~v(t, x)

where

P1~v(t, x) = h2�~v(t, x) and P2~v(t, x) = 2h (∂t − ω · ∇x)~v(t, x).

Now L2 norm of �ϕ~v for ~v ∈ C2(Q) satisfying ~v|Σ = ~v|t=0 = ∂t~v|t=0 = 0, can be estimated as∫
Q

|�ϕ~v(t, x)|2dxdt =

∫
Q

|P1~v(t, x)|2dxdt+

∫
Q

|P2~v(t, x)|2dxdt+ 2

∫
Q

Re
(
P1~v(t, x) · P2~v(t, x)

)
dxdt

≥
∫
Q

|P2~v(t, x)|2dxdt+ 2

∫
Q

Re
(
P1~v(t, x) · P2~v(t, x)

)
dxdt

= 4h2

∫
Q

|(∂t − ω · ∇x)~v(t, x)|2dxdt+ 4h3

∫
Q

Re
(
�~v(t, x) · ∂t~v(t, x)

)
dxdt

− 4h3

∫
Q

Re
(
�~v(t, x) ·

(
ω · ∇x~v(t, x)

))
dxdt

= 4h2

n∑
j=1

∫
Q

|(∂t − ω · ∇x) vj(t, x)|2dxdt+ 4h3

n∑
j=1

∫
Q

Re
(
�vj(t, x)∂tvj(t, x)

)
dxdt

− 4h3

n∑
j=1

∫
Q

Re
(
�vj(t, x)

(
ω · ∇xvj(t, x)

))
dxdt

:=
n∑
j=1

(I1,j + I2,j + I3,j) ,
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where

I1,j := 4h2

∫
Q

|(∂t − ω · ∇x) vj(t, x)|2dxdt

I2,j := 4h3

∫
Q

Re
(
�vj(t, x)∂tvj(t, x)

)
dxdt

I3,j := −4h3

∫
Q

Re
(
�vj(t, x)

(
ω · ∇xvj(t, x)

))
dxdt.

(21)

We will estimate each of Ik,j for 1 ≤ k ≤ 3 and each fixed 1 ≤ j ≤ n. We first simplify I1,j. To
estimate I1,j, first consider the following integral for 0 ≤ s ≤ T

2

s∫
0

∫
Ω

(∂tvj(t, x)− ω · ∇xvj(t, x)) vj(t, x)dxdt =

∫
Ω

|vj(s, x)|2dx−
s∫

0

∫
Ω

∇x ·
(
|vj(t, x)|2ω

)
dxdt.

Now using Cauchy-Schwartz inequality on left hand side of the above equation and the fact that
vj(t, x)|Σ = 0, we have∫

Ω

|vj(s, x)|2dx ≤ 1

ε2

s∫
0

∫
Ω

|(∂t − ω · ∇x) vj(t, x)|2dxdt+ ε2
s∫

0

∫
Ω

|vj(t, x)|2dxdt (22)

holds for any ε > 0. Now integrating both sides of (22) with respect to s variable from 0 to T , we
have

T∫
0

∫
Ω

|vj(s, x)|2dxds ≤ T

ε2

T∫
0

∫
Ω

|(∂t − ω · ∇x) vj(t, x)|2dxdt+ Tε2
T∫

0

∫
Ω

|vj(t, x)|2dxdt.

Now choose ε > 0, small enough such that 1− Tε2 > 0, we get

4Ch2

T∫
0

∫
Ω

|vj(t, x)|2dxdt ≤ I1,j (23)

where C > 0 is some constant depending only on T . Next using the integration by parts and the
fact that vj|Σ = vj|t=0 = ∂tvj|t=0 = 0, we have I2,j is

I2,j = 4h3

∫
Q

Re
(
�vj(t, x)∂tvj(t, x)

)
dxdt

= 2h3

∫
Q

∂

∂t
|∂tvj(t, x)|2dxdt− 4h3

∫
Q

Re
(

∆vj(t, x)∂tvj(t, x)
)

dxdt

= 2h3

∫
Ω

(
|∂tvj(T, x)|2 + |∇xvj(T, x)|2

)
dx.
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Finally, we consider I3,j. This is

I3,j = −4h3

∫
Q

Re
(
�vj(t, x)ω · ∇xvj(t, x)

)
dxdt.

We have

I3,j = −4h3Re

∫
Q

∂2
t vj(t, x)ω · ∇xvj(t, x)dxdt+ 4h3Re

∫
Q

∆vj(t, x)ω · ∇xvj(t, x)dxdt

= −4h3Re

∫
Q

∂t

(
∂tvj(t, x)ω · ∇xvj(t, x)

)
dxdt+ 4h3Re

∫
Q

∂tvj(t, x)ω · ∇x∂tvj(t, x)dxdt

+ 4h3Re

∫
Q

∇x ·
(
∇xvj(t, x)ω · ∇xvj(t, x)

)
dxdt− 4h3Re

∫
Q

∇xvj(t, x) · ∇x

(
ω · ∇xvj(t, x)

)
dxdt

= −4h3Re

∫
Ω

∂tvj(T, x)ω · ∇xvj(T, x)dx+ 2h3

∫
Q

∇x ·
(
ω|∂tvj(t, x)|2

)
dxdt

+ 2h3Re

∫
Σ

∂νvj(t, x)ω · ∇xvj(t, x)dSxdt− 2h3

∫
Q

∇x ·
(
ω|∇xvj|2

)
dxdt

= −4h3Re

∫
Ω

∂tvj(T, x)ω · ∇xvj(T, x)dx+ 2h3

∫
Σ

ω · ν|∂νvj|2dSxdt.

In deriving the above equation, we used the fact that

2h3Re

∫
Σ

∂νvj(t, x)ω · ∇xvj(t, x)dSxdt = 2h3

∫
Σ

ω · ν|∂νvj|2dSxdt,

since vj = 0 on Σ. Also note that ∂tvj(t, x) = 0 and |∇xvj| = |∂νvj| on Σ.
Therefore∫

Q

|�ϕvj(t, x)|2dxdt ≥ 4Ch2

T∫
0

∫
Ω

|vj(t, x)|2 + 2h3

∫
Ω

(
|∂tvj(T, x)|2 + |∇xvj(T, x)|2

)
dx

− 4h3Re

∫
Ω

∂tvj(T, x)ω · ∇xvj(T, x)dx+ 2h3

∫
Σ

ω · ν|∂νvj|2dSxdt.

After using the Cauchy-Schwartz inequality to estimate third term, we get

C
(
h2

∫
Q

|~v(t, x)|2 + h3

∫
Ω

|∂t~v(T, x)|2dx− 4h3

∫
Ω

|∇x~v(T, x)|2dx

+2h3

∫
Σ

ω · ν|∂ν~v|2dSxdt
)
≤ C

∫
Q

|�ϕ~v(t, x)|2dxdt.

(24)

Now we consider the conjugated operator Lϕ := h2e−
ϕ
hLqe

ϕ
h . We have

Lϕ~v(t, x) = h2
(
e−ϕ/h (� + q) eϕ/h~v(t, x)

)
= �ϕ~v(t, x) + h2q(t, x)~v(t, x).
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By triangle inequality,∫
Q

|Lϕ~v(t, x)|2 dxdt ≥ 1

2

∫
Q

|�ϕ~v(t, x)|2dxdt− h4

∫
Q

|q(t, x)~v(t, x)|2dxdt. (25)

We have

h4

∫
Q

|q(t, x)~v(t, x)|2 dxdt ≤ Ch4

∫
Q

|~v(t, x)|2dxdt

where constant C > 0 depends on ‖q‖L∞(Q). Using this together with Equation (24) in (25), we
have that there exists a constant C > 0 depending only on T , Ω and q such that

C

h2

∫
Q

|~v(t, x)|2 + h3

∫
Ω

|∂t~v(T, x)|2dx+ 2h3

∫
Σ

ω · ν|∂ν~v|2dSxdt


≤
∫
Q

|Lϕ~v(t, x)|2 dxdt+ 4h3

∫
Ω

|∇x~v(T, x)|2dx

and this inequality holds for h small enough. After dividing by h2, we get

C

∫
Q

|~v(t, x)|2 + h

∫
Ω

|∂t~v(T, x)|2dx+ 2h

∫
Σ

ω · ν|∂ν~v|2dSxdt


≤ 1

h2

∫
Q

|Lϕ~v(t, x)|2 dxdt+ 4h

∫
Ω

|∇x~v(T, x)|2dx.

(26)

Let us now substitute ~v(t, x) = e−
ϕ
h ~u(t, x). We have

he−ϕ/h∂tuj(t, x) = h∂tvj + e−ϕ/huj,

he−ϕ/h∇xuj = h∇xvj + e−ϕ/hωuj,

∂νvj(t, x)|Σ = e−ϕ/h∂νuj|Σ, since uj = 0 on Σ.

Using the triangle inequality, we have

h

∫
Ω

e−2ϕ(T,x)/h|∂tuj(T, x)|2dx− 1

h

∫
Ω

e−2ϕ(T,x)/h|uj(T, x)|2dx ≤ Ch

∫
Ω

e−2ϕ(T,x)/h|∂tvj(T, x)|2dx

h

∫
Ω

|∇xvj(T, x)|2dx ≤ C

h∫
Ω

e−2ϕ(T,x)/h|∇xuj(T, x)|2dx+
1

h

∫
Ω

e−2ϕ(T,x)/h|uj(T, x)|2dx

 .

Using the above inequalities and choosing h small enough, we have∫
Q

e−2ϕ/h|~u(t, x)|2dxdt+ h

∫
Ω

e−2ϕ(T,x)/h|∂tuj(T, x)|2dx+ 2h

∫
Σ

ω · ν(x)e−2ϕ/h|~u(t, x)|2dSxdt

≤ C

h2

∫
Q

e−2ϕ/h|Lq~u(t, x)|2dxdt+ h

∫
Ω

e−2ϕ(T,x)/h|∇x~u(T, x)|2dx+
1

h

∫
Ω

e−2ϕ(T,x)/h|~u(T, x)|2dx

 .
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Finally,

‖e−ϕ/h~u‖2
L2(Q) + h

(
e−ϕ/h∂νϕ∂ν~u, e

−φ/h∂ν~u
)
L2(Σ+,ω)

+ h
(
e−ϕ(T,·)/h∂t~u(T, ·), e−ϕ(T,·)/h∂t~u(T, ·)

)
L2(Ω)

≤ C

(
‖he−ϕ/hLq~u‖2

L2(Q) +
1

h

(
e−ϕ(T,·)/hu(T, ·), e−ϕ(T,·)/h~u(T, ·)

)
L2(Ω)

+ h
(
e−ϕ(T,·)/h∇x~u(T, ·), e−ϕ(T,·)/h∇x~u(T, ·)

)
L2(Ω)

+ h
(
e−ϕ/h (−∂νϕ) ∂ν~u, e

−ϕ/h∂ν~u
)
L2(Σ−,ω)

)
.

This completes the proof. �

5. Construction of Geometric optics solutions

Aim of this section is to construct exponential growing and decaying solutions which will be used
to prove the main result of this article. To construct these solutions we follow very closely the
ideas from [25, 26] used for constructing the geometric optics solutions for the wave equation with
a scalar potential. We state the following lemma which will be used for constructing the solutions.
Proof of this is given in [25].

Lemma 5.1. [26] Let �±ϕ be as defined in (20), then for each 0 < h < 1 there exists a bounded
linear operator �∗±ϕ : H1(Q)→ H1(Q) such that

(1) �∗±ϕ (�±ϕf) = f, f ∈ H1(Q)
(2) ‖�∗±ϕ‖B(L2(Q)) ≤ C

(3) �∗±ϕ ∈ B (H1(Q);H2(Q)) and ‖�∗±ϕ‖B(H1(Q);H2(Q)) ≤ C

for some constant C > 0 depending only on Q.

Using Lemma 5.1 in the following Proposition, we construct the exponential decaying solution
for Lq∗v = 0.

Proposition 5.2. Let q and ϕ be as in Theorem 4.1. Then, there exists an h0 > 0 such that for
all 0 < h ≤ h0, we can find ~vd ∈ H2(Q) satisfying Lq∗~vd = 0 of the form

~vd(t, x) = e−
ϕ
h

(
~Bd(t, x) + h~Rd(t, x;h)

)
, (27)

where
~Bd(t, x) = e−iζ·(t,x) ~K1 (28)

with ζ ∈ (1,−ω)⊥, ~K1 is a constant n-vector and ~Rd ∈ H2(Q) satisfies

‖~Rd‖L2(Q) ≤ C. (29)

Proof. We have

Lq∗~v(t, x) =


�v1(t, x) +

∑n
j=1 qj1(t, x)vj(t, x)

�v2(t, x) +
∑n

j=1 qj2(t, x)vj(t, x)
...

�vn(t, x) +
∑n

j=1 qjn(t, x)vj(t, x)


and we are looking for ~vd(t, x) of the form (27) such that

Lq∗~vd(t, x) = 0.
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Thus, we have

�vdi(t, x) +
n∑
j=1

qji(t, x)vdj(t, x) = 0, for 1 ≤ i ≤ n (30)

where vdi stands for the ith component of ~vd. Also we denote by Bdi and Rdi as the ith component
of ~Bd and ~Rd respectively. Now using the expressions for vdi from (27) in (30), we have

h2�Rdi − 2h (∂t − ω · ∇x)Rdi + h2

n∑
j=1

qjiRdj = −h�Bdi − h
n∑
j=1

qjiBdj

holds for 1 ≤ i ≤ n. Using Equation (20), we have

�−ϕ ~Rd(t, x) = −hLq∗ ~Bd(t, x)− h2q∗(t, x)~Rd(t, x). (31)

Now for ~w ∈ H1(Q), we define the map F : H1(Q)→ H1(Q) by

F(~w) := �∗−ϕ
(
−hLq∗ ~Bd − h2q∗ ~w

)
.

which is well-defined from Lemma 5.1 and the fact that q ∈ W 1,∞(Q). Now using Lemma 5.1, we
have

‖F(~w1)−F(~w2)‖H1(Q) = h2
∥∥∥�∗−ϕ (q∗ {~w1 − ~w2})

∥∥∥
H1(Q)

≤ Ch2‖~w1 − ~w2‖H1(Q)

for some constant C > 0 independent of ~wi and h. Now choosing h > 0 small enough such that
Ch2 < 1, we have by fixed point theorem, there exists ~w ∈ H1(Q) such that F(~w) = ~w. Now

going back to Equation (31) and using Lemma 5.1, we have ~Rd ∈ H2(Q) and ‖~Rd‖L2(Q) ≤ C. This
completes the proof of Proposition 5.2. �

Next in the following proposition we construct the exponential growing solution to Lq~v = 0.

Proposition 5.3. Let q and ϕ be as in Theorem 4.1. Then, there exists an h0 > 0 such that for
all 0 < h ≤ h0, we can find ~vg ∈ H2(Q) satisfying Lq~vg = 0 of the form

~vg(t, x) = e
ϕ
h

(
~Bg(t, x) + h~Rg(t, x;h)

)
, (32)

~Bg(t, x) := ~K2 is a constant n-vector and ~Rg ∈ H2(Q) satisfies

‖~Rg‖L2(Q) ≤ C. (33)

Proof. Proof follows by using the similar arguments as used in proving Proposition 5.2. �

6. Recovery of q

In this section, we prove the main Theorem 3.1 of this article. The proof is based on deriving an
integral identity followed by using the Carleman estimate and geometric optic solutions constructed
in §5, we conclude the proof of our main result. To derive the integral identity, let us consider ~u(j)

be the solutions to the following initial boundary value problems with matrix valued potential q(j)

for j = 1, 2. 
Lq(j)~u(j)(t, x) = 0, (t, x) ∈ Q
~u(j)(0, x) = ~φ(x), ∂t~u

(j)(0, x) = ~ψ(x), x ∈ Ω

~u(j)(t, x) = ~f(t, x), (t, x) ∈ Σ.

(34)
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Also denote

~u(t, x) := ~u(1)(t, x)− ~u(2)(t, x)

q(t, x) := q(2)(t, x)− q(1)(t, x).
(35)

Then ~u will satisfies the following initial boundary value problem:


Lq(1)~u(t, x) = q(t, x)~u(2)(t, x), (t, x) ∈ Q
~u(0, x) = ∂t~u(0, x) = ~0, x ∈ Ω

~u(t, x) = ~0, (t, x) ∈ Σ

(36)

Let ~v(t, x) of the form given by (27) be the solution to following equation

L∗q(1)~v(t, x) = 0 in Q. (37)

Also let ~u(2) of the form given by (32) be solution to the following equation


Lq(2)~u(2)(t, x) = 0, (t, x) ∈ Q
~u(2)(0, x) = ~φ(x), ∂t~u

(2)(0, x) = ~ψ(x), x ∈ Ω

~u(2)(t, x) = ~f(t, x), (t, x) ∈ Σ.

(38)

Using Theorem 2.1, we have ~u ∈ H1(Q) and ∂ν~u ∈ L2(Σ). Multiply (36) by ~v(t, x) ∈ H1(Q)
solution to (37) and integrate over Q. Now using integration by parts and taking into account the

following: ~u|Σ = ~0, ~u(T, x) = ~0, ∂ν~u|G = ~0, ~u|t=0 = ∂t~u|t=0 = ~0 and L∗
q(1)
~v(t, x) = ~0 , we get

∫
Q

q(t, x)~u(2)(t, x) · ~v(t, x)dxdt =

∫
Ω

∂t~u(T, x) · ~v(T, x)dx−
∫

Σ\G

∂ν~u(t, x) · ~v(t, x)dSxdt. (39)

Lemma 6.1. Let ~u(i) for i = 1, 2 solutions to (34) with ~u(2) of the form (32). Let ~u(t, x) =
~u(1)(t, x)− ~u(2)(t, x), and ~v be of the form (27). Then

h

∫
Ω

∂t~u(T, x) · ~v(T, x)dx→ 0 as h→ 0+. (40)

h

∫
Σ\G

∂ν~u(t, x) · ~v(t, x)dSxdt→ 0 as h→ 0+. (41)
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Proof. Using (27), (29) and Cauchy-Schwartz inequality, we get∣∣∣∣∣∣h
∫
Ω

∂t~u(T, x) · ~v(T, x)dx

∣∣∣∣∣∣ ≤
∫
Ω

h

∣∣∣∣∂t~u(T, x) · e−
ϕ(T,x)

h

(
~Bd(T, x) + h~Rd(T, x)

)∣∣∣∣ dx
≤ C

∫
Ω

h2
∣∣∣∂t~u(T, x)e−

ϕ(T,x)
h

∣∣∣2 dx

 1
2
∫

Ω

∣∣∣e−iξ·(T,x) ~K1 + h~Rd(T, x)
∣∣∣2 dx

 1
2

≤ C

∫
Ω

h2
∣∣∣∂t~u(T, x)e−

ϕ(T,x)
h

∣∣∣2 dx

 1
2 (

1 + ‖h~Rd(T, ·)‖2
L2(Ω)

) 1
2

≤ C

∫
Ω

h2
∣∣∣∂t~u(T, x)e−

ϕ(T,x)
h

∣∣∣2 dx

 1
2

.

Now using the boundary Carleman estimate (4.1), we get,

h

∫
Ω

∣∣∣∂t~u(T, x)e−
ϕ(T,x)

h

∣∣∣2 dx ≤ C‖he−ϕ/hLq(1)~u‖2
L2(Q) = C‖he−ϕ/hq~u(2)‖2

L2(Q).

Substituting (32) for ~u(2), we get,

h

∫
Ω

∂t~u(T, x) · ~v(T, x)dx→ 0 as h→ 0+.

For ε > 0, define

∂Ω+,ε,ω = {x ∈ ∂Ω : ν(x) · ω > ε}, and Σ+,ε,ω = (0, T )× ∂Ω+,ε,ω.

Next we prove (41). Since Σ \G ⊆ Σ+,ε,ω for all ω such that |ω− ω0| ≤ ε, substituting ~v = ~vd from
(27) in (41) we have∣∣∣∣∣∣∣

∫
Σ\G

∂ν~u(t, x) · ~v(t, x)dSxdt

∣∣∣∣∣∣∣ ≤
∫

Σ+,ε,ω

∣∣∣∂ν~u(t, x) · e−
ϕ
h

(
~Bd + h~Rd

)
(t, x)

∣∣∣ dSxdt
≤ C

(
1 + ‖h~Rd‖2

L2(Σ)

) 1
2

 ∫
Σ+,ε,ω

∣∣∣∂ν~u(t, x)e−
ϕ
h

∣∣∣2 dSxdt


with C > 0 is independent of h and this inequality holds for all ω such that |ω − ω0| ≤ ε. Now

using trace theorem, we have that ‖~Rd‖L2(Σ) ≤ C‖~Rd‖H1(Q). Using this, we get∣∣∣∣∣∣∣
∫

Σ\G

∂ν~u(t, x) · ~v(t, x)dSxdt

∣∣∣∣∣∣∣ ≤ C

 ∫
Σ+,ε,ω

∣∣∣∂ν~u(t, x)e−
ϕ
h

∣∣∣2 dSxdt

 1
2

.
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Now ∫
Σ+,ε,ω

∣∣∣∂ν~u(t, x)e−
ϕ
h

∣∣∣2 dSxdt =
1

ε

∫
Σ+,ε,ω

ε
∣∣∣∂ν~u(t, x)e−

ϕ
h

∣∣∣2 dSxdt

≤ 1

ε

∫
Σ+,ε,ω

∂νϕ
∣∣∣∂ν~u(t, x)e−

ϕ
h

∣∣∣2 dSxdt.

Using (19), we have

h

ε

∫
Σ+,ε,ω

∂νϕ
∣∣∣∂ν~u(t, x)e−

ϕ
h

∣∣∣2 dSxdt ≤ C‖he−ϕ/hLq(1)~u‖2
L2(Q).

Now proceeding as before, we get

h

∫
Σ\G

∂ν~u(t, x) · ~v(t, x)dSxdt→ 0 as h→ 0+.

�

Substituting (32) for ~u(2) and (27) for ~v in (39) and using (40) and (41), we get∫
R1+n

e−iξ·(t,x)q(t, x) ~K1 · ~K2dxdt = 0, for ξ ∈ (1,−ω)⊥, for constant vectors ~K1, ~K2 and ω near ω0.

The set of all ξ such that ξ ∈ (1,−ω)⊥ for ω near ω0 forms an open cone and since q ∈ W 1,∞(Q)

has compact support therefore using the Paley-Wiener theorem we conclude that q(t, x) ~K1 · ~K2 = 0

for all (t, x) ∈ Q and arbitrary constant vector ~K1 and ~K2. Thus, we have q1(t, x) = q2(t, x). This
completes the proof of Theorem 3.1.
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[10] A.L. Bukhgĕim and G. Uhlmann; Recovering a potential from partial Cauchy data, Comm Partial Differential
Equ. 2002; 27(34):653-668.

[11] G. Eskin and J. Ralston; Inverse scattering problems for the Schrdinger operators with external Yang-Mills
potentials. Partial differential equations and their applications (Toronto, ON, 1995), 91–106, CRM Proc. Lecture
Notes, 12, Amer. Math. Soc., Providence, RI, 1997.

[12] G. Eskin and J. Ralston; Inverse boundary value problems for systems of partial differential equations. (English
summary) Recent development in theories & numerics, 105–113, World Sci. Publ., River Edge, NJ, 2003. 35R30
(35J10)

[13] I. Ben Aicha; Stability estimate for hyperbolic inverse problem with time-dependent coefficient, Inverse Problems,
31 (2015), 125010.

[14] R. Cipolatti and M. Yamamoto; An inverse problem for a wave equation with arbitrary initial values and a finite
time of observations. Inverse Problems 27 (2011), no. 9, 095006, 15 pp.

[15] G. Eskin; A new approach to hyperbolic inverse problems, Inverse Problems, 22(3):815–831, 2006.
[16] G. Eskin; Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations,

32(10-12):1737–1758, 2007.
[17] G. Eskin; A new approach to hyperbolic inverse problems. II. Global step. Inverse Problems, 23(6):2343–2356,

2007.
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