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Abstract

We study the local recovery of an unknown piecewise constant anisotropic con-
ductivity in EIT (electric impedance tomography) on certain bounded Lipschitz
domains Ω in R2 with corners. The measurement is conducted on a connected
open subset of the boundary ∂Ω of Ω containing corners and is given as a local-
ized Neumann-to-Dirichlet map. The above unknown conductivity is defined via a
decomposition of Ω into polygonal cells. Specifically, we consider a parallelogram-
based decomposition and a trapezoid-based decomposition. We assume that the de-
composition is known, but the conductivity on each cell is unknown. We prove that
the local recovery is almost surely true near a known piecewise constant anisotropic
conductivity γ0. We do so by proving that the injectivity of the Fréchet derivative
F ′(γ0) of the forward map F , say, at γ0 is almost surely true. The proof presented,
here, involves defining different classes of decompositions for γ0 and a perturbation
or contrast H in a proper way so that we can find in the interior of a cell for γ0
exposed single or double corners of a cell of suppH for the former decomposition
and latter decomposition, respectively. Then, by adapting the usual proof near
such corners, we establish the aforementioned injectivity.
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1 Introduction

Let Ω ⋐ R2 be a simply connected Lipschitz domain with corners occupied by an electric
conductive medium. Also, let ∅ ̸= Σ ⊂ ∂Ω be an open connected set which includes
some corners of ∂Ω and on which we have available boundary measurements. We assume
that the electric conductivity, γ, satisfies γ ∈ L∞

+ (Ω), with

L∞
+ (Ω) := {γ ∈ L∞(Ω;R2×2) : γ ≥ δ0I a.e. in Ω for a fixed constant δ0 > 0},

where I is the identity matrix. Electrical impedance tomography (EIT) is an inverse

problem which is stated as follows. Let Λγ : Ḣ
−1/2
⋄ (Σ) → H

1/2
⋄ (Σ) be the localized

Neumann-Dirichlet map (loc ND-map) defined as

Λγ : Ḣ
−1/2
⋄ (Σ) ∋ f 7→ u

∣∣
Σ
∈ H

1/2
⋄ (Σ),

where u ∈ H1
⋄ (Ω) is the unique solution to the boundary value problem given as

∇ · γ∇u = 0 in Ω, ∂γu := ν · (γ∇u) = f on ∂Ω (1.1)

with the unit normal vector ν of ∂Ω directed outward. The function spaces for Λγ are
defined by

Ḣ
−1/2
⋄ (Σ) :=

{
f ∈ H

−1/2
⋄ (∂Ω) : suppf ⊂ Σ

}
, H

1/2
⋄ (Σ) :=

{
f
∣∣
Σ
: f ∈ H

1/2
⋄ (∂Ω)

}
,

where
H

−1/2
⋄ (∂Ω) :=

{
f ∈ H−1/2(∂Ω) : ⟨f, 1⟩ = 0

}
,

H
1/2
⋄ (∂Ω) :=

{
f ∈ H1/2(∂Ω) :

∫
∂Ω
fds = 0

}
,

H1
⋄ (Ω) :=

{
u ∈ H1(Ω) :

∫
∂Ω
uds = 0

}
.

Here, ⟨·, ·⟩ denotes the dual bracket in the dual system ⟨H−1/2(∂Ω), H1/2(∂Ω)⟩. We
consider Λγ as boundary measurements. EIT or, in geophysics, the Direct Current
(DC) method which concerns determining the conductivity γ from Λγ , is also known as
one of the Calderón problem [11].

We also define the forward operator, F , as

F : L∞
+ (Ω) → L(Ḣ−1/2

⋄ (Σ), H̄
1/2
⋄ (Σ)) via F (γ) := Λγ ,

which maps an unknown conductivity γ to the measured data Λγ . Then, in terms of F ,
our inverse problem is to solve the equation F (γ) = Λγ with respect to γ.

2



If the conductivity, γ, is isotropic, that is, γ = σI with a scalar function σ on Ω,
a vast literature is available and the theory of EIT has achieved a substantial level of
completeness, see Uhlmann [34]. However, with the counterexample by Tartar [21], the
general anisotropic case still poses several unresolved issues. A principal line of investi-
gation concerning anisotropy in EIT has been of proving uniqueness modulo a change
of variables which fixes the boundary [8, 9, 22, 23, 25, 29, 32]. In most applications,
however, knowledge of position and, hence, coordinates (variables) are important. In
this direction, certain, diverse results are available [2, 5, 6, 13, 14, 17, 21, 26]. In [3] a
uniqueness result was obtained when the unknown anisotropic conductivity is assumed
to be piecewise constant on a given domain decomposition with non-flat separating in-
terfaces. One of the authors of this paper with collaborators also specialized Tartar’s
counterexample to the case of a half space and constant conductivity thus demonstrating
that the non-flatness condition on boundary and interfaces is necessary.

Here, we prove that local uniqueness and Lipschitz stability are almost surely true
for anisotropic piecewise constant conductivities with flat interfaces defining a domain
decomposition can nonetheless be obtained. As a byproduct we can have the proba-
bilistic convergence of the Levenberg-Marquardt iteration scheme and the Landweber
iteration scheme for locally recovering the unknown conductivity from the loc ND-map
(see [15, 27], and the references therein). For proving them, we introduce a (known)
background and an unknown contrast with distinct, particular decompositions of Ω.
We refer to subdomains as cells. The key contribution of this paper is the exploitation
of exposed corners of the support of the unknown anisotropic contrast. Such exposure
limits the choice of cells in the decomposition. For example, with triangular decompo-
sitions there is not necessarily a properly exposed corner point. In fact, a restriction of
decompositions into quadrilateral cells seems essential.

EIT with conductivities associated with a domain decomposition subjected to appro-
priate conditions, have been analyzed before in the isotropic case. In the piecewise ana-
lytic case, in dimension two, the unique determination was proven in [20]. A conditional
Lipschitz stability estimate for identifying an isotropic piecewise constant conductivity
with known interfaces from the localized DN-map was given in [7]. Here, the interfaces
are the inner boundaries produced by the domain decomposition. Further results were
obtained in [4, 10], extending the representation to piecewise linear conductivities. The
local recovery, in dimension two, of an isotropic piecewise polynomial conductivity on a
triangulated domain was analyzed in [24]. A geometric inverse problem that has been
studied for piecewise constant perturbations concerns the geodesy ray transform on a
two-dimensional compact non-trapping manifold [18]. The authors consider simplices
for their decomposition and, thus, manifolds with corners. They exploit the corners in
their proof as we do.

EIT corresponds to the electric resistivity tomography (ERT) in geophysics. As early
as 1920, Conrad Schlumberger [31] recognized that anisotropy may affect geological for-
mations’ DC electrical properties. Anisotropic effects when measuring electromagnetic
fields in geophysical applications have been studied ever since. From an inverse problems
perspective, it is interesting that Maillet and Doll [28] already identified obstructions
to recovering an anisotropic resistivity from (boundary) data. Many of the studies of
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anisotropy in as much as the solutions of the boundary value problem and their probing
capabilities are concerned, have been restricted to electrical conductivities (or resistiv-
ities) that are piecewise constant while plane layers form the subdomains in a domain
decomposition of a half space. That is, flat interfaces separate the subdomains. Yin and
Weidelt [35] considered arbitrary anisotropy for the DC-resistivity method in planarly
layered media in a geophysics context.

Tiling a domain has a natural link to the domain decomposition of the finite el-
ement method. In this paper, we consider two types of quadrilateral domain decom-
positions forming tilings. One is the parallelogram-based decomposition and the other
is a trapezoid-based decomposition. The former one has one exposed corner and the
latter one has two exposed corners in some arrangement. Here, we say a quadirateral
decomposition of a Lipschitz domain has N exposed corners if it satisfies the following
condition. That is any connected union of quadrilaterals of this decomposition includes
a quadrilateral which has N vertices not intersecting with other quadrilaterals in this
union. One of a typical trapezoid-based decomposition with 2 exposed corners can be
seen in geology. That is a vertical slice of a horst and graben topography of a normal
fault in structural geology (see Figure 1 and [33]). In this paper, we will shed light on
in almost surely recovering anisotropic conductivities for a domain with aforementioned
decompositions.

Figure 1: Horst and graben topography with normal faults.

In the forthcoming Subsections 1.1 and 1.2, although we will assume that the Lip-
schitz domain Ω is either a parallelogram or a union of trapezoids, it is only for brief
descriptions of our results. These results can be generalized for more general tiled
Lipschitz domains by the same arguments.

1.1 Parallelogram-based decomposed domain

First, we introduce the notion of parallelogram-based or skewed-grid-based domain de-
composition. For simplicity of describing this, we let

Ω = [0, 1]× [0, 1], Σ = ([0, 1]× {0}) ∪ ({0} × [0, 1]) ,

with respect to an oblique coordinate with an angle θ ∈ (0, π). A parallelogram-based
domain, Ω, has the form

Ω =
⋃

C∈Pr,θ

C,
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where Pr,θ is a set of parallelograms, C, given as follows. Let r ∈ (0, 1]. Starting from the
rhombus [0, r]×[0, r] , we fill Ω horizontally by a horizontal array of such rhombuses with
side length r as much as possible, and denote the family of these rhombuses by S1 and
their union by S1. If T1 := (Ω ∩ ([0, 1]× [0, r]))\S1 ̸= ∅, we add this parallelogram to S1.
We refer to the result as the first stair of an array of parallelograms. Here and hereafter,
we abuse the terminologies horizontal and vertical for directions parallel to the axis of
the first coordinate and to the axis of the second coordinate of the oblique coordinates,
respectively. Several stairs of such horizontal arrays Sj , j = 1, · · · J including possible
Tj , j = 1, . . . , J can be stacked to fill Ω as much as possible.

If the parallelograms of ∪Jj=1Sj cannot fill Ω entirely, then we divide the remainder
at the top vertically by parallelograms with horizontal side length r and vertical one
r̃, where r̃ is the horizontal side length of the parallelogram T1, and define U := (1 −
r̃, 1) × (1 − r̃, 1) as the rhombus with side length r̃ in the top right corner of Ω. Thus
Pr,θ becomes the set of all of these parallelograms including U , see Figure 2.

�
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�

�

�
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…

� �

�

�

�

�
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Figure 2: Parallelogram decomposition.

For r0 ∈ (0, 1] and θ ∈ (0, π), we denote

V c
Pr0,θ

:=
{
γ : Ω → R2×2 : γ is constant for each C ∈ Pr0,θ

}
. (1.2)

Also, for r ∈ (0, 1], θ ∈ (0, π), and fixing {ϕc}C∈Pr,θ
with each ϕC ∈ (0, 2π], we denote

V c
Pr,θ,{ϕc} :=

H : Ω → R2×2 :

∀C ∈ Pr,θ, ∃h1,c, h2,c ∈ R :

H
∣∣∣
C
= RTϕc

(
h1,c 0
0 h2,c

)
Rϕc

 , (1.3)

where Rϕ is the rotation matrix with angle ϕ ∈ (0, 2π]. Further, we denote

V c,+
Pr0,θ

:= L∞
+ (Ω) ∩ V c

Pr0,θ
and V c,+

Pr,θ,{ϕc} := L∞
+ (Ω) ∩ V c

Pr,θ,{ϕc},
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from which we take a background conductivity and have a perturbative conductivity,
respectively. Here and hereafter, we use the terms perturbation and perturbative for
elements of V c,+

Pr,θ,{ϕc} and even the difference of their elements.

In addition to these, we define the probability measure Pr on the infinite product
space T :=

∏
j∈N Tj with T1 := (0, 1], Tj+1 := (0, 2π], j ∈ N as follows. We first let

{(Tj ,Fj , Pj)}j∈N be the collection of probability spaces defined by{
F1 := B((0, 1]), Fj+1 := B((0, 2π]) for j ∈ N,
P1 := m, Pj+1 :=

1
2πm for j ∈ N

with the Lebesgue measure m on R and the Borel classes B((0, 1]), B((0, 2π]) for (0, 1],
(0, 2π]. If any subset A of T has the form A =

∏
j∈NAj ∈ T with Aj ∈ Fj such that

Aj = Tj except for finitely many j, we call it a measurable cylinder. Let M and P be
the collection of all measurable cylinders and the finitely additive set function P on the
additive class M defined by P (A) :=

∏
j∈N Pj(Aj) for A ∈ M, respectively. Then, P

admits a unique extension to a probability measure Pr on the σ-algebra σ(M) of M
(see [30]).

We now state our first main result, which claims probabilistic local uniqueness and
Lipschitz stability of the inverse problem on parallelogram-based decomposed domains.

Theorem 1.1. Fix θ ∈ (0, π), r0 ∈ (0, 1], and γ0 ∈ int(V c,+
Pr0,θ

). For r ∈ (0, 1] and

ϕ⃗ = (ϕ1, ϕ2, ...) ∈
∏
i∈N(0, 2π], let Q

p

r,ϕ⃗
be a proposition stated as follows:

∃ϵ > 0 :
∀{ϕc}C∈Pr,θ

⊂ {ϕi}i∈N0 ,
∀γ ∈ int(V c,+

Pr,θ,{ϕc}) with ∥γ − γ0∥∞ ≤ ϵ,
∃δ = δ({ϕc}, γ) > 0 with Bδ(γ) ⊂ int(V c,+

Pr,θ,{ϕc}) :

such that
∥τ − σ∥∞ ≤ C∥F (τ)− F (σ)∥, τ, σ ∈ Bδ(γ)

with a constant C = C({ϕc}, γ) > 0,

(1.4)

where int(E) is the interior of a set E, ∥τ − σ∥∞ is the essential supremum of τ − σ in
Ω, ∥F (τ)− F (σ)∥ is the operator norm of F (τ)− F (σ) and Bδ(γ) is an open ball with
radius δ centered at γ.

Then, for an event Ep defined by

Ep = {(r, ϕ⃗) ∈ (0, 1]×
∏
i∈N

(0, 2π] : Qp
r,ϕ⃗

is true},

we have
Pr(Ep) = 1. (1.5)

The meanings of the logical notations ∀ and ∃ used in the above theorem are “for any”
and “exists”. Then, the above theorem means that by specifying the side length r for
the perturbation cell and preparing an infinite dimensional vector ϕ⃗ from which we
take the rotation angles {ϕc}C∈Pr,θ

of the perturbation, we can have the local Lipschitz

stability ∥τ −σ∥∞ ≤ C∥F (τ)−F (σ)∥, τ, σ ∈ Bδ(γ) for almost all such (r, ϕ⃗) in the set
(0, 1]×

∏
i∈N(0, 2π].
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1.2 Trapezoid-based decomposed domain

In this subsection, we introduce another domain decomposition which we call the
trapezoid-based domain decomposition. After that we will give our second main re-
sult.

To define the decomposition, we first define Ω and Σ as follows. Prepare an even
number of isosceles trapezoids with low angle θ ∈ (0, π) and side length one. Invert half
of these trapezoids. Then attach these trapezoids and inverted trapezoids alternatingly
to form a parallelogram. Furthermore, slide the inverted trapezoids by q ∈ (0, 1).
Then, we define Ω as the union of these trapezoids and inverted trapezoids (Figure 3)
and Σ ⊂ ∂Ω as the thick black lines in Figure 3.

We also define the following two sets. Let Lr0,θ be the set of cells with lateral side
length r0 obtained by dividing Ω horizontally from the bottom up. If r0 /∈ Q, there
will be remainders at the top appear with lateral side lengths different from r0. We
also include them in the set Lr0,θ (see Figure 4 left). This Lr0,θ gives the set of the
background cells. Let Tr,θ be the set of isosceles trapezoids with length r obtained by
cutting the isosceles trapezoids and the inverted isosceles trapezoids in Ω horizontally
from the bottom up. Again, if r /∈ Q, there will be remainders which are also included
in Tr,θ (see the right in Figure 4). This Tr,θ gives the set of the perturbative cells.

�� �

�
�

1

Figure 3: Union of trapezoids.

�0
�

Figure 4: Lateral decomposition for background (left), and trapezoid decomposition for
perturbation (right).
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For r0 ∈ (0, 1] and θ ∈ (0, π), we denote

V c
Lr0,θ

:=
{
γ : Ω → R2×2 : γ is constant for each C ∈ Lr0,θ

}
. (1.6)

Also, for r ∈ (0, 1], 0 < θ < π, we denote

V c
Tr,θ :=

{
H : Ω → R2×2 : H is constant for each C ∈ Tr,θ

}
. (1.7)

Further, we denote

V c,+
Lr0,θ

:= L∞
+ (Ω) ∩ V c

Lr0,θ
and V c,+

Tr,θ := L∞
+ (Ω) ∩ V c

Tr,θ

from which we take a background conductivity and have a perturbative conductivity,
respectively. Here and hereafter, we use the terms perturbation and perturbative for
elements of V c,+

Tr,θ and even the difference of their elements. We now state our second

main result, which claims probabilistic local uniqueness and Lipschitz stability of the
inverse problem on trapezoid-based decomposed domains.

Theorem 1.2. Fix r0, q ∈ (0, 1] satisfying the irrational condition, that is, r0q ̸∈ Q, and

γ0 ∈ int(V c,+
Lr0,θ

). For r ∈ (0, 1] and θ ∈ (0, π], let Qtr,θ be a proposition stated as follows:

∃ϵ > 0 :
∀γ ∈ int(V c,+

Tr,θ ) with ∥γ − γ0∥∞ ≤ ϵ,
∃δ = δ(γ) > 0 with Bδ(γ) ⊂ int(V c,+

Tr,θ ) :

such that
∥τ − σ∥∞ ≤ C∥F (τ)− F (σ)∥, τ, σ ∈ Bδ(γ)

with a constant C = C(γ) > 0,

(1.8)

Furthermore, let E t = {(r, θ) ∈ (0, 1]× (0, π] : Qtr,θ is true} be an event. Then

Pr(E t) = 1,

where

Pr :=
1

π
m,

where m is the two-dimensional Lebesgue measure.

In the parallelogram decomposition, the perturbative function space is defined by
specifying the sequence of rotation angles {ϕc} which correspond to the angles of the
symmetry axes of the perturbative conductivity, cell-wise, H

∣∣
C
, C ∈ Pr,θ with respect

to the axis of the reference coordinates. It is unnecessary to specify these symmetry
axes for the trapezoidal decomposition, and, hence, the second main result is stronger
than the first one. This is because we can use two lower corners of each cell of H
which are included in the interior of a single cell for the background conductivity, while
in the parallelogram division, we can only use a single corner. Although we gave the
decomposition as in Figure 4, we can also give the decomposition as in Figure 5 which
allows us to have vertical divisions associated to the conductivities. Indeed, yet other
decompositions may be considered, while in this paper we emphasize the principles
rather than exhaustively showing the examples of decompositions.
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Remark 1.3. By using Theorem 2 in [1], we can show the probabilistic local Lipschitz
stability such as Theorems 1.1 and 1.2 with finite measurements, which is the localized
Neumann-to-Dirichlet operator projected onto some finite rank space.

�

�0

Figure 5: Another decomposition for background (left) and perturbation (right).

1.3 Local recovery and advantage of using distinct decompositions

In this subsection, we first point out that we can have a local recovery result for EIT.
More precisely, we have the probabilistic convergence of the Levenberg–Marquardt it-
eration scheme and Landweber iteration scheme under the settings of the two main
results. This is because Lipschitz stability implies the so-called tangential cone condi-
tion, which is known as a sufficient condition for the convergence of these schemes (see
e.g., [16, 19]).

Next, we summarize the key ideas behind the proofs of our main results. We choose
γ0 and γ from different function spaces. More precisely, γ0 ∈ Int(V c,+

Q ), γ ∈ Int(V c,+
R ),

where {
Q = Pr0,θ, R = Pr,θ,{ϕc} for the parallelogram decomposition,

Q = Lr0,θ, R = Tr,θ for the trapezoidal decomposition

with r, r0 subject to the irrationality condition r
r0

̸∈ Q and an extra irrationality con-
dition q

r0
̸∈ Q for the trapezoidal decomposition. These irrationality conditions are

essential in the following sense. The corner points of the cells in R are in the interior
of a cell in Q except for corner points on ∂Ω. Then, with the help of the extension
argument (see Remark 3.3 given later), the injectivity of the Fréchet derivative F ′(γ0)
of the forward operator F can be proven using the singularity of a fundamental solution
for the operator ∇· (γ0∇ ) near the aforementioned corner points. If we don’t have such
a situation, the structure of the singularity of the fundamental solution becomes ex-
ceedingly complicated near those corner points. In view of the irrationality conditions,
we state our main results in a probabilistic framework.

The remainder of this paper is organized as follows. In Section 2, we summarize the
properties of the forward operator F and prove the probabilistic local Lipschitz stability
for the inverse problem assuming the conditional injectivity of Fréchet derivative of
the forward operator. In Section 3, we prove this injectivity for the parallelogram-
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and trapezoid-based decompositions as stated in Propositions 3.1 and 3.6, respectively.
Section 4 is devoted to proving two technical lemmas used in the previous section. Then,
we end with some concluding remarks and proposing some generalizations of our results.

2 Local Lipschitz stability

The purpose of this section is to prove Lemma 2.2 given below which states that the
conditional injectivity of the Fréchet derivative F ′ of forward operator F implies the
local Lipschitz stability for the forward operator. Before the proof, we first review the
following statements which can be proved by the same arguments given in sections 2
and 3 of [24].

Lemma 2.1. (1) F is Fréchet differentiable at each γ ∈ int(L∞
+ (Ω)) with Fréchet

derivative F ′(γ) ∈ L(L∞(Ω),L(Ḣ−1/2
⋄ (Σ), H̄

1/2
⋄ (Σ))) given by

F ′(γ)[H]f := u′
∣∣
Σ
, H ∈ L∞(Ω)

where u′ ∈ H1
⋄ (Ω) is the unique solution for∫
Ω
γ∇u′ · ∇φdx = −

∫
Ω
H∇u · ∇φdx for all φ ∈ H1

⋄ (Ω), (2.1)

with the solution u of (1.1).

(2) There exist some constants C1, ..., C4 > 0 independent of τ, σ such that

∥F (τ)∥ ≤ C1, (2.2)

∥F (τ)− F (σ)∥ ≤ C2 ∥τ − σ∥∞ , (2.3)∥∥F (τ)− F (σ)− F ′(σ)[τ − σ]
∥∥ ≤ C3 ∥τ − σ∥2∞ , (2.4)∥∥F ′(τ)− F ′(σ)

∥∥ ≤ C4 ∥τ − σ∥∞ , (2.5)

for τ, σ ∈ L∞
+ (Ω).

We will show the following local Lipschitz stability by assuming the injectivity of
the Fréchet derivative. The idea of the proof is to modify the argument of Theorem
3.4 in [24]. To proceed further, let Vb and Vp be subspaces of L∞(Ω;R2×2) which
correspond to the spaces for the background and perturbation, respectively. We also
denote V +

b := Vb ∩ L∞
+ (Ω) and V +

p := Vp ∩ L∞
+ (Ω).

Lemma 2.2. Let γ0 ∈ V +
b . Assume that the injectivity of the Fréchet derivative holds,

that is, the following minimum is positive:

min{
∥∥F ′(γ0)[H]

∥∥ : H ∈ Vp, ∥H∥∞ = 1} > 0. (2.6)

Then, there exists ϵ = ϵ(γ0) > 0 such that for any γ ∈ int(V +
p ) with ∥γ0 − γ∥∞ ≤ ϵ,

∥τ − σ∥∞ ≤ C ∥F (τ)− F (σ)∥ , τ, σ ∈ Bδ(γ),

holds for some C = C(γ0, γ) > 0 and δ = δ(γ0, γ) > 0 with Bδ(γ) ⊂ int(V +
p ).
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Proof. Let
Cγ0 := min{

∥∥F ′(γ0)[H]
∥∥ : H ∈ Vp, ∥H∥∞ = 1} > 0 (2.7)

and take ϵ, δ > 0 small enough which will be specified later. Also, let τ, σ ∈ Bδ(γ).
Then using (2.7), we evaluate∥∥F ′(σ)[τ − σ]

∥∥ =
∥∥F ′(γ0)[τ − σ] + F ′(σ)[τ − σ]− F ′(γ0)[τ − σ]

∥∥
≥ ∥F ′(γ0)[τ − σ]∥

∥τ − σ∥∞
∥τ − σ∥∞ −

∥∥F ′(σ)[τ − σ]− F ′(γ0)[τ − σ]
∥∥

≥ Cγ0 ∥τ − σ∥∞ − C4 ∥σ − γ0∥∞︸ ︷︷ ︸
≤∥σ−γ∥∞+∥γ−γ0∥∞

∥τ − σ∥∞

≥ (Cγ0 − C4(δ + ϵ))︸ ︷︷ ︸
=:D=D(γ0,γ)

∥τ − σ∥∞ ,

(2.8)

where C4 > 0 is the constant given in Lemma 2.1 which is independent of γ , γ0, τ and
σ. Here we choose ϵ = ϵ(γ0) > 0 and δ = δ(γ, γ0) > 0 to satisfy Cγ0 − C4ϵ > 0 and
D = D(γ0, γ) = Cγ0 − C4(δ + ϵ) > 0, respectively.

By (2.4) and (2.8), we have

∥∥F (τ)− F (σ)− F ′(σ)[τ − σ]
∥∥ ≤ C3

∥F ′(σ)[τ − σ]∥
∥F ′(σ)[τ − σ]∥

∥τ − σ∥2∞

≤ C3

D(γ0, γ)

∥∥F ′(σ)[τ − σ]
∥∥ ∥τ − σ∥∞ ,

(2.9)

where C3 > 0 is the constant given in Lemma 2.1 which is independent of γ , γ0, τ and
σ. From (2.9) we obtain∥∥F ′(σ)[τ − σ]

∥∥− ∥F (τ)− F (σ)∥

≤
∥∥F (τ)− F (σ)− F ′(σ)[τ − σ]

∥∥ ≤ C3

D(γ0, γ)

∥∥F ′(σ)[τ − σ]
∥∥ ∥τ − σ∥∞︸ ︷︷ ︸

≤2δ

,

which implies that(
1− 2C3δ

D(γ0, γ)

)
︸ ︷︷ ︸

=:E=E(γ0,γ)

∥∥F ′(σ)[τ − σ]
∥∥ ≤ ∥F (τ)− F (σ)∥ . (2.10)

If necessary, we choose δ = δ(γ, γ0) > 0 smaller such that E(γ0, γ) > 0. Therefore by
(2.8) and (2.10), we have

∥τ − σ∥∞ ≤ 1

D(γ0, γ)E(γ0, γ)
∥F (τ)− F (σ)∥ .

11



3 Proof of conditional injectivity of the Fréchet derivative

The task in this section is to analyze when we can have the conditional injectivity of the
Fréchet derivative F ′ of the forward operator F for the parallelogram and trapezoidal
decompositions. By applying the two core Lemma 4.1 and Lemma 4.2 given later in
Section 4, we can achieve this task. As a result, it can be seen that our first two main
results hold.

3.1 Parallelogram decomposition

Proposition 3.1. Let θ ∈ (0, π), r0 ∈ (0, 1], and γ0 ∈ int(V c,+
Pr0,θ

). Assume that

r, r0 ∈ (0, 1] satisfy the irrational condition, that is, r
r0

̸∈ Q. Also, assume that

ϕ⃗ = (ϕ1, ϕ2, ...) ∈
∏
i∈N(0, 2π] satisfies

2ϕi + αc ̸= 0, π, 2π, 3π, 4π, 5π, (3.1)

for all i ∈ N and C ∈ Pr0,θ, where some αc depends on γ0
∣∣
C

(for the definition of αc,
see (3.14), (3.16), (3.17) in the proof). Then, we have

min{
∥∥F ′(γ0)[H]

∥∥ : H ∈ V c
Pr,θ,{ϕc}, ∥H∥∞ = 1} > 0. (3.2)

Proof. Suppose (3.2) does not hold. Since V c
Pr,θ,{ϕc} is a finite dimensional linear space,

there exists H ∈ V c
Pr,θ,{ϕc} with ∥H∥∞ = 1 such that

F ′(γ0)[H]f = u′
∣∣
Σ
= 0, f ∈ Ḣ

−1/2
⋄ (Σ)

where u′ is solution of (2.1) with γ = γ0. This implies that

−
∫
Ω
H∇u · ∇udx =

∫
Ω
γ0∇u′ · ∇udx =

∫
Ω
γ0∇u · ∇u′dx

=

∫
∂Ω
ν · (γ0∇u)u′ds−

∫
Ω
∇ · (γ0∇u)u′dx = 0,

(3.3)

where u ∈ H1
⋄ (Ω) is the unique solution for (1.1) with γ = γ0.

Since H ̸= 0 and H is a constant 2× 2 matrix for each parallelogram cell C ∈ Pr,θ,
suppH consists of several parallelogram cells in Ω and its boundary ∂ suppH consists
of edges and vertices of parallelogram cells. By extending the domain Ω (see Remark
3.3 and Figure 9), we can assume that

suppH ∩ Σ = ∅. (3.4)

Then, there exists an exposed corner point x0 at the lower left of some cell CH ∈ Pr,θ
(see Figure 6). Let us write H in the form (see definition of the function space (1.3))

H = RTϕCH

(
h1 0
0 h2

)
RϕCH

̸= 0 on CH . (3.5)

12
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Figure 6: Exposed corner.

Then, one of the constants hi is not zero.
Note that γ0 is a constant 2× 2 matrix near the corner x0 because all corners of the

cells in Pr0,θ except those on ∂Ω differ from those of cells in Pr,θ. In fact, otherwise,
there exist N,M ∈ N such that rN = r0M which contradicts to r

r0
/∈ Q. We denote by

Cγ such a cell for γ0 including x0 in its interior.
Now we consider the transformations given in Figure 7. By the change of variables
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Figure 7: Transformations.

x = x̂+ x0, we have from (3.3) ∫
Ω̂
Ĥ∇û · ∇û dx̂ = 0, (3.6)

where û(x̂) := u(x− x0) ∈ H1
⋄ (Ω̂) is the unique solution of

∇ · γ̂0∇û = 0 in Ω̂, ∂γ̂0 û = f̂ on ∂Ω̂, f̂ ∈ Ḣ
−1/2
⋄ (Σ̂),

where we have denoted

Ω̂ := Ω− x0, Σ̂ := Σ− x0, ĈH := CH − x0, Ĉγ := Cγ − x0,

Ĥ := H(·+ x0), γ̂0 := γ0(·+ x0).

Since γ̂0(0) is a positive definite matrix, there exists a rotation matrix Rψ with an angle
ψ ∈ (0, 2π] and a diagonal matrix D = diag(d1, d2) with d1, d2 > 0 such that

γ̂0(0) = RTψDRψ.

13



Then, by the change of variables given as x̂ = (D1/2Rψ)
T x̃, we have from (3.6)∫

Ω̃
H̃∇ũ · ∇ũdx̃ = 0, (3.7)

where ũ(x̃) := û(D−1/2Rψx̂) ∈ H1
⋄ (Ω̃) is the unique solution for

∇ · γ̃0∇ũ = 0 in Ω̃, ∂γ̃0 ũ = f̃ on ∂Ω̃, f̃ ∈ Ḣ
−1/2
⋄ (Σ̃),

and we have denoted

Ω̃ := D−1/2Rψ(Ω̂), Σ̃ := D−1/2Rψ(Σ̂), C̃H := D−1/2RψĈH , C̃γ := D−1/2RψĈγ ,

H̃ := D−1/2RψĤ(D−1/2Rψ)
T , γ̃ := D−1/2Rψγ̂(D

−1/2Rψ)
T .

Here we remark that

γ̃0(0) = D−1/2RψR
T
ψDRψR

T
ψD

−1/2 = I.

To proceed further, let φ ∈ (0, 2π] be the angle between the axis x̃1 and

D−1/2Rψ

(
1
0

)
, and let θ̃ ∈ (0, π] be the angle between D−1/2Rψ

(
1
0

)
and

D−1/2Rψ

(
k
1

)
with k := 1

tanθ .

By denoting d :=

∥∥∥∥D−1/2Rψ

(
1
0

)∥∥∥∥, we have

(
cosφ
sinφ

)
= d−1

(
d
−1/2
1 cosψ

d
−1/2
2 sinψ

)
. (3.8)

Furthermore, by the change of variables given as x̃ = Rφy, we have from (3.7)∫
Ω̌
Ȟ∇ǔ · ∇ǔdy = 0, (3.9)

where ǔ(x̌) := ũ(RTφ x̃) ∈ H1
⋄ (Ω̌) is the unique solution for

∇ · γ̌0∇ǔ = 0 in Ω̌, ∂γ̌0 ǔ = f̌ on ∂Ω̌, f̌ ∈ Ḣ
−1/2
⋄ (Σ̌), (3.10)

and we have denoted

Ω̌ := RTφ(Ω̃), Σ̌ := RTφ(Σ̃), ČH := RTφC̃H , Čγ := RTφ C̃γ ,

Ȟ := RTφH̃Rφ, γ̌ := RTφ γ̃Rφ.

Here we remark that
γ̌0(0) = RTφIRφ = I (3.11)

14



�

�

�

�

�

��

Figure 8: Runge approximation.

and the angle of the corner at the origin is θ̃ (see Figure 7).
We apply the Runge approximation theorem given in Lemma 4.1 of [12] by taking

Ω1, Γ1, and Ω2 there as follows. Namely, Ω1 = Ω̌, Γ1 = Σ̌, and Ω2 ⊂ Ω1 is chosen
such that suppȞ ⊂ Ω2, η /∈ Ω2, ∂Ω1 \ ∂Ω2 = Γ1, ∂Ω1 ∩ ∂Ω2 = ∂Ω1 \ Γ1 (see Figure
8). Here η ∼ 0 is the singular point of a fundamental solution Eγ̌0η for the partial

differential operator ∇ · (γ̌0∇) in R2. Then, there exists {f̌n}∞n=1 ⊂ Ḣ
−1/2
⋄ (Σ̌) such that

the sequence of solutions ǔn, n ∈ N of (3.10) with f̌ = f̌n, n ∈ N approximates Eγ̌0η as
n→ ∞. By letting n→ ∞ in (3.9) with ǔ = ǔn, we have

0 =

∫
suppȞ

Ȟ∇Eγ̌0η · ∇Eγ̌0η dy.

Note that suppȞ has a small closed trapezoid T with the angle θ̃ at the origin such that
T ⊂ ČH ∩ Čγ (see Figure 7, right), and γ̌ is the identity matrix in the neighborhood
V ⋐ Čγ of T (see (3.11)). Then,

Eγ̌0η − E0
η ∈ H1(V ), η ∈ V,

where E0
η is a fundamental solution for the partial differential operator freezing the

coefficient at the origin ∇ · (γ̌0(0)∇), which is the fundamental solution for ∆, that is

E0
η(y) =

1

2π
log |y − η|.

Then, we have

0 =

∫
T
Ȟ∇Eγ̌0η · ∇Eγ̌0η dy +

∫
suppȞ\T

Ȟ∇Eγ̌0η · ∇Eγ̌0η dy︸ ︷︷ ︸
=O(1) as η→0

=

∫
T
Ȟ∇(E0

η + Eγ̌0η − E0
η) · ∇(E0

η + Eγ̌0η − E0
η)dy +O(1)

=
1

(2π)2

∫
T
Ȟ∇y log |y − η| · ∇y log |y − η|dy︸ ︷︷ ︸

=:I(η)

+O(1).

(3.12)

for all η ∈ V \ T , which implies that

sup
η∈V \T

|I(η)| <∞.
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Using Lemma 4.1 given later in Section 4, we have{
ȟ11 + ȟ22 = 0

k̃ȟ11 + ȟ12 = 0,
(3.13)

where

Ȟ
∣∣
ČH

=

(
ȟ11 ȟ12
ȟ12 ȟ22

)
, k̃ :=

1

tanθ̃
.

By the transformation we have introduced so far, the matrix Ȟ
∣∣
ČH

has the form

Ȟ
∣∣
ČH

= RTφD
−1/2RψĤ

∣∣
ĈH

(RTφD
−1/2Rψ)

T .

By direct computation and using (3.8), we have

RTφD
−1/2Rψ = d

(
1 a
0 b

)
,

where

a :=
d2 − d1
2d2

sin2ψ, b :=
d
−1/2
1 d

−1/2
2

d2
. (3.14)

Using (3.5), we have

Ĥ
∣∣
ĈH

= RTϕCH

(
h1 0
0 h2

)
RϕCH

.

By direct computation, the condition (3.13) for ȟij is translated into the condition for
hi as

{
cos2ϕ− asin2ϕ+ (a2 + b2)sin2ϕ

}
h1

+
{
sin2ϕ+ asin2ϕ+ (a2 + b2)cos2ϕ

}
h2 = 0,{

−1
2sin2ϕ+ (a− k̃b)sin2ϕ

}
h1 +

{
1
2sin2ϕ+ (a− k̃b)cos2ϕ

}
h2 = 0.

(3.15)

By direct computation, the determinant of equation (3.15) is given by

(Determinant) = p sin2ϕ+ q cos2ϕ =
√
p2 + q2sin(2ϕ+ α), (3.16)

where

p := −1

2
a2 +

1

2
b2 + k̃ab+

1

2
, q := a− k̃b, (3.17)

and α ∈ (−π, π] depending on γ0
∣∣
Cγ0

is the angle corresponding to the composition of

trigonometric functions. By assumption (3.1), (Determinant) is not zero. Therefore, we
conclude that

h1 = h2 = 0,

which contradicts to (3.5). Hence, Proposition 3.1 has been proved.

16



Remark 3.2. In terms of the original coordinates, the trace zero condition for Ȟ
∣∣
ČH

can be computed as follows:

0 = Tr[Ȟ
∣∣
ČH

] = Tr[RTφD
−1/2RψĤ

∣∣
ĈH

(RTφD
−1/2Rψ)

T ]

= Tr[Ĥ
∣∣
ĈH
RTφD

−1Rψ] = Tr[Ĥ
∣∣
ĈH
γ̂0(0)

−1] = Tr[H
∣∣
CH
γ0(x0)

−1].

We note that this condition can be derived by approaching η to no matter which edge of
the cell ČH excluding 0 in Figure 8.

Remark 3.3. (extention argument) In the proof, we have assumed (3.4) which can be
justified as follows by just using the following condition:∫

Ω
H∇u · ∇udx = 0,

where H ∈ L∞(Ω) and u ∈ H1
⋄ (Ω) is the unique solution of

∇ · γ0∇u = 0 in Ω, ∂γ0u = f on ∂Ω, f ∈ Ḣ
−1/2
⋄ (Σ). (3.18)

In fact, let ΩE ⊂ R2 be the parallelogram extension of Ω with Ω ⋐ ΩE (see Figure 9),
and let γ0,E be the extension of γ0 to ΩE with γ0,E |Ω = γ0, and let HE be the zero
extension of H to ΩE. Also, let w = wg ∈ H1

⋄ (ΩE) be the solution of

�

�

��

��

Figure 9: Extension of domain.

∇ · γ0,E∇w = 0 in ΩE , ∂γ0,Ew = g on ∂ΩE . (3.19)

for any given g ∈ Ḣ
−1/2
⋄ (ΣE). Then, the restriction w|Ω on Ω satisfies (3.18) with

f = ∂γ0,Ew
∣∣
∂Σ

∈ Ḣ
−1/2
⋄ (Σ), which yields∫
ΩE

HE∇w · ∇wdx =

∫
Ω
H∇(w|Ω) · ∇(w|Ω)dx = 0,

for any w = wg, g ∈ Ḣ
−1/2
⋄ (ΣE). Then, the proof of (3.4) ends by noticing that we

have suppHE ∩ ΣE = ∅.
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Next, we turn to consider the orthotropic case of Proposition 3.1 (that is, ψ = ϕ =
2π, k̃ = 1

tanθ , a = 0, and b ̸= 0). Then, the determinant of equation (3.15) is determined
by

(Determinant) = −b k̃.

Hence, the determinant is not zero except θ = π
2 , which implies the following lemma

and collorary.

Lemma 3.4. For r ∈ (0, 1] and θ ∈ (0, π), define

V c,ort
Pr,θ

:=

{
H =

(
h1 0
0 h2

)
: Ω → R2×2 : H is constant for each C ∈ Pr,θ

}
,

and V c,ort,+
Pr,θ

:= L∞
+ (Ω) ∩ V c,oth

Pr,θ
. Let θ ∈ (0, π) \ {π2 }, r0 ∈ (0, 1], and γ0 ∈ int(V c,ort,+

Pr0,θ
).

Then, assuming that r, r0 ∈ (0, 1] satisfy the irrational condition, that is, r
r0

̸∈ Q, we
have

min{
∥∥F ′(γ0)[H]

∥∥ : H ∈ V c,oth
Pr,θ

, ∥H∥∞ = 1} > 0. (3.20)

Corollary 3.5. Fix θ ∈ (0, π) \ {π2 }, r0 ∈ (0, π], and γ0 ∈ int(V c,ort,+
Pr0,θ

). For r ∈ (0, 1],

let Qp,ortr be a proposition stated as follows:

∃ϵ > 0 :
∀γ ∈ int(V c,ort,+

Pr,θ
) with ∥γ − γ0∥∞ ≤ ϵ,

∃δ = δ(γ) > 0 with Bδ(γ) ⊂ int(V c,ort,+
Pr,θ

)

such that
∥τ − σ∥∞ ≤ C∥F (τ)− F (σ)∥, τ, σ ∈ Bδ(γ)

with a constant C = C(γ) > 0,

(3.21)

Furthermore, let Ep,ort = {r ∈ (0, 1] : Qp,ortr is true} be an event. Then,

m(Ep,ort) = 1,

where m is the two-dimensional Lebesgue measure.

3.2 Trapezoidal decomposition

Proposition 3.6. Fix r0, q ∈ (0, 1] satisfying the irrational condition, that is, r0
q ̸∈ Q,

and γ0 ∈ int(V c,+
Lr0,θ

). Let r, r0 ∈ (0, 1] satisfy the irrational condition, that is, r
r0

̸∈ Q.

Assume that θ ∈ (0, π) satisfies

±
〈
(γ0|C)−1

(
1
0

)
,

(
1

tanθ
1

)〉
̸= 0, for each cell C ∈ Lr0,θ. (3.22)

Then, we have
min{

∥∥F ′(γ0)[H]
∥∥ : H ∈ V c

Tr,θ , ∥H∥∞ = 1} > 0. (3.23)
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Proof. We basically follow the proof of Proposition 3.1. To begin with, we note that
(3.3) gives us the integral identity∫

Ω
H∇u · ∇udx = 0,

for any unique solution u ∈ H1
⋄ (Ω) of

∇ · γ0∇u = 0 in Ω, ∂γ0u = f on ∂Ω, f ∈ Ḣ
−1/2
⋄ (Σ).

and some H ∈ V c
Lr0,θ

with ∥H∥ = 1.

By the extension argument (see Remark 3.3), we can assume that

suppH ∩ Σ = ∅,

that is, suppH consists of several cells in Tr,θc without having the intersection with Σ.
Then, there exist two exposed lower corner points z0 and z1 of some cell CH ∈ Tr,θ with
angle θ or π − θ. Further, these points are included in the interior of a lateral cell Cγ
for γ0 (see the left in Figure 10).
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Figure 10: Transformations.

Now, by the argument in the proof of Proposition 3.1 using the transformations
(3.6)–(3.9), the Runge approximation and the estimate for fundamental solutions (3.12),
we can show that

I(η) :=

∫
T
Ȟ∇y log |y − η| · ∇y log |y − η|dy, for η ∈ V \ T

satisfies
sup
η∈V \T

|I(η)| <∞,

where Ȟ is defined by the same way as (3.6)–(3.9), and T, V are defined as follows.
Namely, T is a small closed isosceles trapezoid in a cell ČH of suppȞ with the lower
angle θ̃ or π − θ̃ at the origin and ž1, and V is an open neighborhood of T (see Figure
10 right). Here we can assume that by taking T, V smaller if necessary, there exists a
cell Čγ for γ̌0 such that γ̌0 = I and V ⋐ Čγ . Also, by the assumption (3.22), we have
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θ̃ ̸= π
2 . This is because θ̃ is the angle between D−1/2Rψ

(
1
0

)
and D−1/2Rψ

(
k
1

)
,

where k = 1
tanθ or 1

tan(π−θ) . Using Lemma 4.2, we have

Ȟ
∣∣
ČH

= 0,

which is equivalent to H
∣∣
CH

= 0, hence this contradicts to suppH ̸= ∅.

4 Core computations

In this section, we provide the core computations obtaining some conditions for H
leading to H = 0 which were skipped in the proofs of the conditional injectivity of the
Fréchet derivative in Subsection 3.1 and Subsection 3.2. We first prove the following
lemma applied in Subsection 3.1 which gives two independent conditions for H obtained
by approaching the singular point of a fundamental solution for γ0 to the edge of a single
corner and then to its vertex.

Lemma 4.1. Let ϵ > 0, k ∈ R, and let H =

(
h11 h12
h12 h22

)
be a symmetric constant

matrix. Define the closed trapezoid T := {ky2 ≤ y1 ≤ ϵ, 0 ≤ y2 ≤ ϵ} ⊂ [0,∞)× (−∞, 0]
(see Figure 11). Let V ⊂ R2 be an open neighborhood of T and define

I(η) :=

∫
T
H∇y log |y − η| · ∇y log |y − η|dy, η /∈ T.

Then,
sup
η∈V \T

|I(η)| <∞. (4.1)

implies {
h11 + h22 = 0
kh11 + h12 = 0.

(4.2)
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Figure 11: Integral on trapezoid.
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Proof. Let us assume (4.1). For η = (η1, η2)
T ∈ V \ T , express I(η) in the form

I(η) =

∫
T
H∇ log |y − η| · ∇ log |y − η|dy

=

∫
T

h11(y1 − η1)
2 + h22(y2 − η2)

2 + 2h12(y1 − η1)(y2 − η2)

{(y1 − η1)2 + (y2 − η2)2}2
dy.

(4.3)

Since we approach η to the bottom edge, η2 < 0, η1 − kη2 ̸= 0.
By the change of variables given as t = y1 − η1, s = y2 − η2 in (4.3) and further

making the change of variables t = su, we have

I(η) =

∫ ϵ

0

∫ ϵ

ky2

h11(y1 − η1)
2 + h22(y2 − η2)

2 + 2h12(y1 − η1)(y2 − η2)

{(y1 − η1)2 + (y2 − η2)2}2
dy1dy2

=

∫ ϵ−η2

−η2

∫ ϵ−η1

k(s+η2)−η1

h11t
2 + h22s

2 − 2h12ts

{t2 + s2}2
dtds

=

∫ ϵ−η2

−η2

1

s

∫ ϵ−η1
s

k(s+η2)−η1
s

h11u
2 + h22 + 2h12u

{u2 + 1}2
duds.

(4.4)

Note that

h11u
2 + h22 + 2h12u

{u2 + 1}2
=
h11 + h22

2

d

du
Arctanu− h11 − h22

2

d

du

u

1 + u2
− h12

d

du

1

1 + u2
.

Hence we have

I(η) =
h11 + h22

2

∫ ϵ−η2

−η2

1

s

(
Arctan

(
ϵ− η1
s

)
−Arctan

(
ks+ kη2 − η1

s

))
ds

− h11 − h22
2

∫ ϵ−η2

−η2

1

s

 ( ϵ−η1
s

)
1 +

( ϵ−η1
s

)2 −

(
ks+kη2−η1

s

)
1 +

(
ks+kη2−η1

s

)2
 ds

+ h12

∫ ϵ−η2

−η2

1

s

 1

1 +
( ϵ−η1

s

)2 − 1

1 +
(
ks+kη2−η1

s

)2
 ds.

(4.5)

For the further computation of (4.5), we compute the integral

J(f) :=

∫ ϵ−η2

−η2

1

s
f

(
ϵ− η1
s

)
ds−

∫ ϵ−η2

−η2

1

s
f

(
ks+ kη2 − η1

s

)
ds, (4.6)

where f(x) = Arctan(x) or x
1+x2

or 1
1+x2

. By the change of variables given as v =
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ϵ−η1
s , v = ks+kη2−η1

s and integrating by parts, we have

J(f) = −
∫ ϵ−η1

ϵ−η2

ϵ−η1
−η2

v

ϵ− η1
f(v)

ϵ− η1
v2

dv +

∫ kϵ−η1
ϵ−η2

η1
η2

v − k

kη2 − η1
f(v)

kη2 − η1
(v − k)2

dv

= −
∫ ϵ−η1

ϵ−η2

ϵ−η1
−η2

(
d

dv
log |v|

)
f(v)dv +

∫ kϵ−η1
ϵ−η2

η1
η2

(
d

dv
log |v − k|

)
f(v)dv

= − [log |v|f(v)]
ϵ−η1
ϵ−η2
ϵ−η1
−η2

+

∫ ϵ−η1
ϵ−η2

ϵ−η1
−η2

log |v| d
dv
f(v)dv

+ [log |v − k|f(v)]
kϵ−η1
ϵ−η2
η1
η2

−
∫ kϵ−η1

ϵ−η2

η1
η2

log |v − k| d
dv
f(v)dv.

(4.7)

Since ∫ ∞

−∞
log |v − a| d

dv
f(v)dv <∞, a ∈ R,

for all the three cases f(x) = Arctan(x), x
1+x2

, 1
1+x2

, we have

J(f) = −f
(
ϵ− η1
ϵ− η2

)
log

∣∣∣∣ϵ− η1
ϵ− η2

∣∣∣∣︸ ︷︷ ︸
=O(1)

+f

(
ϵ− η1
−η2

)
log

∣∣∣∣ϵ− η1
−η2

∣∣∣∣︸ ︷︷ ︸
log 1

|η2|
+O(1)

+ f

(
kϵ− η1
ϵ− η2

)
log

∣∣∣∣kϵ− η1
ϵ− η2

− k

∣∣∣∣︸ ︷︷ ︸
=log|η1−kη2|+O(1)

−f
(
η1
η2

)
log

∣∣∣∣η1η2 − k

∣∣∣∣︸ ︷︷ ︸
=log|η1−kη2|+log 1

|η2|

+O(1)

=

{
f

(
ϵ− η1
−η2

)
− f

(
η1
η2

)}
log

1

|η2|

+

{
f

(
kϵ− η1
ϵ− η2

)
− f

(
η1
η2

)}
log |η1 − kη2|+O(1).

(4.8)
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Using (4.5) and (4.8), we have

I(η) =

[
h11 + h22

2

{
Arctan

(
ϵ− η1
−η2

)
−Arctan

(
η1
η2

)}

− h11 − h22
2


(
ϵ−η1
−η2

)
1 +

(
ϵ−η1
−η2

)2 −

(
η1
η2

)
1 +

(
η1
η2

)2


− h12

 1

1 +
(
ϵ−η1
−η2

)2 − 1

1 +
(
η1
η2

)2

]
log

1

|η2|

+

[
h11 + h22

2

{
Arctan

(
kϵ− η1
ϵ− η2

)
−Arctan

(
η1
η2

)}

− h11 − h22
2


(
kϵ−η1
ϵ−η2

)
1 +

(
kϵ−η1
ϵ−η2

)2 −

(
η1
η2

)
1 +

(
η1
η2

)2


− h12

 1

1 +
(
kϵ−η1
ϵ−η2

)2 − 1

1 +
(
η1
η2

)2

]
log |η1 − kη2|+O(1).

(4.9)

First, fix 0 < η1 << 1 and consider the asymptotic behavior of I(η) as η2 → −0. Then,
we have

I(η) =

[
h11 + h22

2

{
Arctan

(
ϵ− η1
−η2

)
−Arctan

(
η1
η2

)}

− h11 − h22
2


(
ϵ−η1
−η2

)
1 +

(
ϵ−η1
−η2

)2 −

(
η1
η2

)
1 +

(
η1
η2

)2


− h12

 1

1 +
(
ϵ−η1
−η2

)2 − 1

1 +
(
η1
η2

)2

]
log

1

|η2|
+O(1)

=
h11 + h22

2

{
Arctan

(
ϵ− η1
−η2

)
−Arctan

(
η1
η2

)}
log

1

|η2|

− h11 − h22
2

{
− (ϵ− η1) η2

η22 + (ϵ− η1)
2 − η1η2

η21 + η22

}
log

1

|η2|︸ ︷︷ ︸
=O(1)

− h12

{
η22

η22 + (ϵ− η1)
2 − η22

η21 + η22

}
log

1

|η2|︸ ︷︷ ︸
=O(1)

+O(1)
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=
h11 + h22

2

{
Arctan

(
ϵ− η1
−η2

)
−Arctan

(
η1
η2

)}
log

1

|η2|
+O(1).

Here, by the assumption (4.1), the integral I(η) should not blow up as η2 → −0. Hence,
we have the following necessary condition

lim
η2→−0

h11 + h22
2

{
Arctan

(
ϵ− η1
−η2

)
−Arctan

(
−η1
η2

)}
︸ ︷︷ ︸

→π

= 0

⇔ h11 + h22 = 0. (4.10)

Next, using (4.10) and applying limη2→−0 to the first term of (4.9), we consider the
asymptotic behavior of I(η1,−0) := limη2→−0 I(η) as η1 → +0. Then, we have

I(η1,−0) = −

[
h11 − h22

2

(
kϵ−η1
ϵ

)
1 +

(
kϵ−η1
ϵ

)2 + h12
1

1 +
(
kϵ−η1
ϵ

)2
]
log |η1|+O(1).

Here, by the assumption (4.1), the integral I(η1,−0) should not blow up as η1 → +0.
Hence, we have the following necessary condition

lim
η1→+0

[
h11 − h22

2︸ ︷︷ ︸
=h11

(
kϵ−η1
ϵ

)
1 +

(
kϵ−η1
ϵ

)2
︸ ︷︷ ︸

= k
1+k2

+h12
1

1 +
(
kϵ−η1
ϵ

)2
︸ ︷︷ ︸

= 1
1+k2

]
= 0

⇔ kh11 + h12 = 0. (4.11)

Thus we have obtained (4.2)

If we could have used two corners, then we might have three independent conditions
which immediately implies H = 0. By using the extension argument, this is indeed
the case for our trapezoidal decomposition for the perturbative conductivity H. More
precisely, we have following lemma.

Lemma 4.2. Let θ ∈ (0, π) \ {π2 }, and let H =

(
h11 h12
h12 h22

)
be a symmetric constant

matrix. Denote by T a closed isosceles trapezoid including two corners. Let them be the
origin and z1 on y1-axis with the lower angle θ as in Figure 12. Define

I(η) :=

∫
T
H∇y log |y − η| · ∇y log |y − η|dy, η /∈ T

and let V ⊂ R2 be an open neighborhood of T . Then,

sup
η∈V \T

|I(η)| <∞. (4.12)

implies
H = 0.
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Figure 12: Integral on isosceles trapezoid.

Proof. Let us assume (4.12). First, we let the singular point η of log |y − η| approach
to the corner at the origin. Then, from Lemma 4.1, we have{

h11 + h22 = 0,
kh11 + h12 = 0,

(4.13)

where k = 1
tanθ .
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Figure 13: Transformation.

Next, we let the singular point η of log |y − η| approach to the corner at z1. By the

change of variables given as y = Au+ z1 with A =

(
−1 0
0 1

)
(see Figure 13), we have

I(η) =

∫
T
H∇y log |y − η| · ∇y log |y − η|dy

=

∫
T̃
ATHA∇u log |Au+ z1 − η| · ∇u log |Au+ z1 − η|du

=

∫
T̃

(
h11 −h12
−h12 h22

)
∇u log |u− η̃| · ∇u log |u− η̃|du,

where
T̃ := A(T − z1), η̃ := A(η − z1).
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Then, from Lemma 4.1, we have {
h11 + h22 = 0,
kh11 − h12 = 0.

This together with (4.13) yields
2kh11 = 0.

By the assumption θ ∈ (0, π)\{π2 }, we have k ̸= 0 and hence h11 = 0, which immediately
implies h12 = h22 = 0. Thus, we have proved H = 0.

5 Concluding remarks

In this paper, we showed the probabilistic local Lipschitz stability for EIT in parallelogram-
or trapezoid-based decomposed domains with piecewise constant anisotropic conductiv-
ities. As a result we also gave the probabilistic local recovery for the aforementioned
EIT. The core computations of proving these are Propositions 3.1 and 3.6, and the key
ingredients for its proof are the following:

(i) We used different grid-based decompositions of Ω for the background conductivity
and perturbative conductivity. Upon using these decompositions, we can expose
some corner points of a cell of the support of the perturbative conductivity in-
side the interior of a cell of the background conductivity by using the extension
argument. This allowed us to conduct the core computations deriving the pertur-
bative conductivity H = 0, that is the injectivity of the Fréchet derivative F ′ of
the forward operator F .

(ii) In proving H = 0 from the integral identity testing H with solutions of the con-
ductivity equation, we used the Runge approximation theorem to approximate the
solutions by fundamental solutions of the background conductivity equation and
targeted the exposed corner with the singular points of the fundamental solutions.

Generalizations of our results that are worth exploring include

• As a natural extension of the work in this paper, an important study with imme-
diate results is that of the three-dimensional case.

• Generalizing the main results to the piecewise smooth case.

• Showing the injectivity of the Fréchet derivative with a joint, single domain de-
composition, which would imply avoiding the irrationality and angle conditions.

• Using other decompositions for Ω such as one with pentagons.

For all of these, we need to have a fundamental solution or a singular solution with
a local pointwise estimate from below for its gradient, which will be our future works
and opened to anybody who is interested in this issue.
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