DEPARTMENT OF MATHEMATICS, IIT JAMMU, INDIA Instructors: Rahul Kitture and Manmohan Vashisth.

Calculus (Tutorial # 6)

Limits, Continuity and Differentiation in \mathbb{R}^n

- 1. If $\mathbf{r}(t) = (t, t^2, t^3)$ then find $\mathbf{r}'(t), T(1), \mathbf{r}''(t)$ and $\mathbf{r}'(t) \times \mathbf{r}''(t)$.
- 2. Find the point on the curve defined by $\mathbf{r}(t) := (2\cos t, 2\sin t, e^t), t \in [0, \pi]$ where tangent is parallel to the plane $\sqrt{3}x + y = 1$.
- 3. Show that the curves given by $\mathbf{r}_1(t) = (t, t^2, t^3)$ and $\mathbf{r}_2(t) = (\sin t, \sin 2t, t)$ intersect at the origin. Find the angle of their intersection.
- 4. Let $\mathbf{r}(t)$ be a vector function defined for $t \in (a, b)$. Then
 - (a) $\frac{d}{dt} [\mathbf{r}(t) \times \mathbf{r}'(t)] = \mathbf{r}(t) \times \mathbf{r}''(t).$
 - (b) If $\mathbf{r}(t) \neq 0$ then $\frac{d}{dt} \|\mathbf{r}(t)\| = \frac{1}{\|\mathbf{r}(t)\|} \mathbf{r}(t) \cdot \mathbf{r}'(t)$.
 - (c) If $||\mathbf{r}(t)|| = 1$ for each $t \in (a, b)$ then show that $\mathbf{r}(t)$, is normal to the curve defined by \mathbf{r} at each $t \in (a, b)$.
- 5. Let $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$ be given by $\mathbf{r}(t) = (\cos t, \sin t)$. Prove the following:
 - (i) $\mathbf{r}'(t) = (-\sin t, \cos t).$
 - (ii) The equation $\mathbf{r}(2\pi) \mathbf{r}(0) = \mathbf{r}'(t)(2\pi 0)$ is not satisfied for any $t \in \mathbb{R}$.
 - (iii) For each $\mathbf{a} \in \mathbb{R}^2$, there is $t_0 \in (0, 2\pi)$ such that $\mathbf{a} \cdot (\mathbf{r}(t) \mathbf{r}(s)) = \mathbf{a} \cdot \mathbf{r}'(t_0)(t-s)$.

6. Sketch the graph of the following surfaces.

(a) Sphere: $S := \{(x, y, z) \in \mathbb{R}^2 : x^2 + y^2 + z^2 = 1\}.$ (b) Ellipsoid: $S := \{(x, y, z) \in \mathbb{R}^2 : x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1\}.$ (c) Hyperboloid of one sheet: $S := \{(x, y, z) \in \mathbb{R}^2 : x^2 + y^2 - z^2 = 1\}.$ (d) Hyperboloid of two sheets: $S := \{(x, y, z) \in \mathbb{R}^2 : x^2 - y^2 - z^2 = 1\}$ (e) Paraboloid : $S := \{(x, y, z) \in \mathbb{R}^2 : z = x^2 + y^2\}$ (f) Elliptical paraboloid: $S := \{(x, y, z) \in \mathbb{R}^2 : z = \frac{x^2}{4} + \frac{y^2}{9}\}$ (g) Parabolic cylinder: $S := \{(x, y, z) \in \mathbb{R}^2 : z = x^2\}$ (h) Rectangular hyperbolic paraboloid: $S := \{(x, y, z) \in \mathbb{R}^2 : z = x^2 - y^2\}$ (i) Hyperbolic paraboloid: $S := \{(x, y, z) \in \mathbb{R}^2 : z = \frac{x^2}{4} - \frac{y^2}{9}\}$ (j) Cylinder: $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ (k) Hyperboloid: $S := \{(x, y, z) \in \mathbb{R}^3 : z = xy\}$

7. Find the following limits if exist

(i)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 (ii) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ (iii) $\lim_{(x,y)\to(0,0)} \frac{y}{x^2+y^4}$
(iv) $\lim_{(x,y)\to(0,0)} \frac{3x^5-xy^4}{x^4+y^4}$ (v) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$ (vi) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^2}$
(vii) $\lim_{(x,y)\to(1,1)} \frac{x-y^4}{x^3-y^4}$ (viii) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$ (ix) $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$.

8. Let $D \subset \mathbb{R}^2$ be an open set and $f: D \to \mathbb{R}$ be a function. Then prove the following.

- (a) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and if one of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ is bounded on D, then f is continuous on D. What about converse?
- (b) If both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous on D, then f is differentiable on D. What about the converse?
- 9. Let $D \subset \mathbb{R}^2$ be an open set and $f: D \to \mathbb{R}$ be a function. If the functions $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ are both continuous on D, then $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$ for $(a, b) \in D$.
- 10. Show that $\lim_{(x,y)\to(2,-2)} e^{\left(\frac{4(x+y)\log(y^2x)}{x^2-y^2}\right)} = 8.$
- 11. Let $f(x, y) = x^{-1} \sin(xy)$ for $x \neq 0$. How should you define f(0, y) for $y \in \mathbb{R}$ so as to make f a continuous function on all of \mathbb{R}^2 ?
- 12. At which points of \mathbb{R}^2 , the following function is continuous?

$$f(x,y) = \begin{cases} \frac{y(y-x^2)}{x^4} & \text{if } 0 < y < x^2\\ 0 & \text{otherwise.} \end{cases}$$

13. Under what conditions on $\alpha, \beta \in \mathbb{R}$, the following function is continuous at (0, 0)?

$$f(x,y) = \begin{cases} \frac{x^{\alpha}y^{\beta}}{x^2 + xy + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

14. Give an example of a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that f(x, a) and f(a, y) are continuous functions of x and y respectively, for any $a \in \mathbb{R}$ but f is not continuous on \mathbb{R}^2 .

15. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(0,0) = 0 and $f(x,y) = \frac{x^2 y^2}{x^4 + y^2}$ if $(x,y) \neq (0,0)$.

- (i) Show that $\frac{\partial f}{\partial x}$ is continuous at (0,0), but $\frac{\partial f}{\partial y}$ is not.
- (ii) Show that f is differentiable at (0,0).
- 16. Let $f(x,y) = (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$ and f(0,0) = 0. Show that f is differentiable at (0,0) but both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are discontinuous at (0,0).
- 17. Let $f: \mathbb{R}^2 \to \mathbb{R}$ is such that f(0,0) = 0, and is given by following for $(x,y) \neq (0,0)$.

(i)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 (ii) $f(x,y) = \sqrt{|xy|}$ (iii) $f(x,y) = \frac{x^2y^2}{x^2y^2 + (y-x)^2}$
(iv) $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ (v) $f(x,y) = \frac{x^2y}{x^2 + y^2}$ (vi) $f(x,y) = |x| + |y|$

Answer the following for each of the functions defined above.

- (a) For which vectors u ∈ ℝ² \ {(0,0} does D_uf(0,0) exist? Evaluate it when it exists.
 (b) Do ∂f/∂x(0,0) and ∂f/∂u(0,0) exist?
- (c) Is f continuous at (0,0)?
- (d) Is f differentiable at (0,0)?

18. Let f(x,y) = |xy| for $(x,y) \in \mathbb{R}^2$. Prove the following:

- (i) f_x exists at all points of \mathbb{R}^2 except at (0, b) for $b \in \mathbb{R} \setminus \{0\}$. (Do the same for f_y .)
- (ii) f is differentiable at (0, 0).

19. Let
$$f(x,y) = \frac{x^2y}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$ and $f(0,0) = 0$.

- (i) Show that for any non-zero vector (u, v), $D_u f(0, 0) = u^2 v$.
- (ii) Is f differentiable at (0,0)?

20. Find the indicated partial derivatives.

21. Verify that the function $z = \ln(e^x + e^y)$ is a solution of the differential equations

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$$
 and $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$

22. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(0,0) = 0 and $f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$ if $(x,y) \neq (0,0)$.

(a) Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist for all $(x, y) \in \mathbb{R}^2$. Also find the expressions for them. (b) Show that $\frac{\partial^2 f}{\partial y}(0, 0) = -1$ and $\frac{\partial^2 f}{\partial y}(0, 0) = 1$

- (b) Show that $\frac{\partial^2 f}{\partial x \partial y}(0,0) = -1$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0) = 1$.
- 23. Let $D \subset \mathbb{R}^2$ be an open set and suppose the function $f: D \to \mathbb{R}$ has a local maximum at $(x_0, y_0) \in D$. If $D_u f(x_0, y_0)$ exists for all $u \in \mathbb{R}^2 \setminus \{(0, 0)\}$ then $D_u f(x_0, y_0) = 0$. In particular $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ and $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.
- 24. Find the point on the plane x 2y + 3z = 6 that is closest to the point (0, 1, 1).
- 25. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4, 2, 0).
- 26. Find three positive numbers whose sum is 100 and product is maximum.
- 27. Find the absolute maximum and minimum values of f on the set D.
 - (a) $f(x,y) = x^2 + y^2 2x$, D is triangular region with vertices (2,0) (0,2) and (0,-2).

(b)
$$f(x,y) = x^4 + y^4 - 4xy + 2$$
, $D := \{(x,y): 0 \le x \le 3, 0 \le y \le 2\}$.

- (c) $f(x,y) = x^2 = y^2 + x^2y + 4$, $D := \{(x,y) : |x| \le 1, |y| \le 1\}$.
- (d) $f(x,y) = 2x^3 + y^4$ $D := \{(x,y): x^2 + y^2 \le 1\}.$
- 28. Find the local maximum and minimum for the following functions.
 - (a) $f(x, y) = 9 2x + 4y x^2 4y^2$ (b) f(x, y) = xy(1 - x - y)(c) $f(x, y) = xe^{-2x^2 - 2y^2}$ (d) $f(x, y) = \sin x \sin y$, $-\pi < x < \pi$ and $-\pi < y < \pi$.
- 29. If a function of one variable is differentiable on an interval and has only one critical point, then a local maximum has to be an absolute or global maximum. But this is not true for function of two variables. Show that the function $f(x, y) = 3xe^y x^3 e^{3y}$ has exactly one critical point, and that f has a local maximum there but that is not an absolute maximum.

- 30. Show that the function $f(x,y) = x^2 y e^{-x^2 y^2}$ has maximum values at $(\pm 1, 1/\sqrt{2})$ and minimum values at $(\pm 1, -1/\sqrt{2})$. Show also that f has infinitely many other critical points and $D := \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$ is zero at each of them. Which of them give rise to maximum values? Minimum values? Saddle points?
- 31. Let $g: (0, \infty) \to \mathbb{R}$ be a two times continuously differentiable function. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) := g(r) where $r = \sqrt{x^2 + y^2}$. Then using the polar coordinates and chain rule show that

$$\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{d^2 g}{dr^2} + \frac{2}{r} \frac{dg}{dr}.$$

Hence, solve $\Delta f = 0$ in \mathbb{R}^2 .

32. If
$$u(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
, for $(x, y, z) \neq (0, 0, 0)$ then find ∇u and $\Delta u := \nabla \cdot (\nabla u)$.

33. A function $f : \mathbb{R}^2 \to \mathbb{R}$ is said to be **homogeneous** of degree $\alpha \in \mathbb{R}$ if $f(tX) = t^{\alpha}f(X)$ for all $X := (x, y) \in \mathbb{R}^2$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a two times differentiable and homogeneous function of degree α . Then show that

(a) (Euler's Theorem)
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \alpha f(x, y)$$

(b) $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = \alpha (\alpha - 1) f(x, y).$

- 34. Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ and $F, G : \mathbb{R}^3 \to \mathbb{R}^3$ be differentiable functions. Then prove the following.
 - (a) $\nabla(fg) = f(\nabla g) + g(\nabla f)$ (b) $\nabla(F \cdot G) = (F \cdot \nabla)G + F \times (\nabla \times G) + (G \cdot \nabla)F + G \times (\nabla \times F)$ (c) $\nabla \cdot (fG) = (\nabla f) \cdot G + f(\nabla \cdot G)$ (d) $\nabla \cdot (F \times G) = G \cdot (\nabla \times F) - F \cdot (\nabla \times G)$ (e) $\nabla \times (fG) = f(\nabla \times G) + (\nabla f) \cdot G$ (f) $\nabla \times (F \times G) = (G \cdot \nabla)F + (\nabla \cdot G)F - (F \cdot \nabla)G - (\nabla \cdot F)G$
- 35. Let $f : \mathbb{R}^3 \to \mathbb{R}$ and $F : \mathbb{R}^3 \to \mathbb{R}^3$ be two times differentiable functions. Then prove the following.
 - (a) $\nabla \times (\nabla f) = 0$
 - (b) $\nabla \cdot (\nabla \times F) = 0$
 - (c) $\nabla \times (\nabla \times F) = \nabla (\nabla \cdot F) \Delta F$, here $(\Delta F)_i := \frac{\partial^2 F_i}{\partial x^2} + \frac{\partial^2 F_i}{\partial y^2} + \frac{\partial^2 F_i}{\partial z^2}$, is the i'th component of ΔF , for i = 1, 2, 3.

Optional problems

- 1. Find the interior and boundary points for the following sets. Tell which of them is open, closed or neither.
 - $\begin{array}{ll} (i) & [1,2], (2,3) \text{ and } [3,7) \\ (ii) & \{(x,y) \in \mathbb{R} : \ 0 < x^2 + y^2 \le 16\} \\ (v) & \{(x,y) : |x| + |y| \le 1\} \\ (vi) & \{(x,y) \in \mathbb{R}^2 : \ x,y \in \mathbb{Q} \cap [0,1]\} \\ \end{array}$
- 2. Answer the following with justification.
 - (a) True or false: If S_1 and S_2 are open subset of \mathbb{R}^n then $S_1 \cap S_2$ is also open.
 - (b) True or false: If $\{S_j\}_{j\in\mathbb{N}}$ is a collection of open subsets of \mathbb{R}^n then so is $\cap_{j\in\mathbb{N}}S_j$.
 - (c) True or false: If $\{S_j\}_{j\in\mathbb{N}}$ is a collection of closed subsets of \mathbb{R}^n then $\bigcup_{j\in\mathbb{N}}S_j$ may not be closed.
 - (d) If $\{S_j\}_{j\in\mathbb{N}}$ is a collection of open subsets of \mathbb{R}^n then so is $\bigcup_{j\in\mathbb{N}}S_j$.
 - (e) True or false: Intersection of finite number of open sets is open.
 - (f) True or false: Union of finite number of closed sets is closed.
- 3. Let $S \subset \mathbb{R}^n$ be a closed set and $\{X_k\}_{k \in \mathbb{N}}$ be a sequence in S such that $\{X_k\}_{k \in \mathbb{N}}$ converges to $X \in \mathbb{R}^n$, then show that $X \in S$. What would be your conclusion if S is not closed?
- 4. Let $S \subset \mathbb{R}^n$ be a nonempty set and $A \in \partial S$. Then show that there exists a sequence $\{X_k\}_{k \in \mathbb{N}} \subseteq S$ such that $X_k \to A$ as $k \to \infty$.
- 5. Prove that a function $F : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map if and only if there exists an $m \times n$ matrix A such that F(X) = AX for any column vector $X \in \mathbb{R}^n$.
- 6. Let $f: D \subset \mathbb{R} \to \mathbb{R}$ be a continuous function. Then show that the graph $G_f := \{x, y\} \in \mathbb{R}^2$: y = f(x) and $x \in D$ } and the level set $L_f(c) := \{x \in D : f(x) = c\}$ are closed subset of \mathbb{R}^2 and \mathbb{R} respectively.