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1. Introduction

Let Ω ⊂ Rn with n ≥ 2, be a bounded simply connected open set with C2 boundary. For T > 0,
let Q := (0, T )×Ω and denote its lateral boundary by Σ := (0, T )× ∂Ω. We consider the following
initial boundary value problem

(
∂t −

∑n
j=1 (∂j + Aj(t, x))2 + q(t, x)

)
u(t, x) = 0, (t, x) ∈ Q

u(0, x) = 0, x ∈ Ω

u(t, x) = f(t, x), (t, x) ∈ Σ.

(1.1)

Throughout this article, we assume that Aj ∈ W 1,∞(Q) for 1 ≤ j ≤ n and q ∈ L∞(Q). Let us
denote by

A(t, x) := (A1(t, x), A2(t, x), · · · , An(t, x))

and by

LA,q := ∂t −
n∑
j=1

(∂j + Aj(t, x))2 + q(t, x).

Before going to the main context of the article, let us briefly mention about the well-posedness of
the forward problem. Following [14], define the spaces K0 and HT by

K0 :=
{
f |Σ : f ∈ L2

(
0, T ;H1(Ω)

)
∩H1

(
0, T ;H−1(Ω)

)
and f(0, x) = 0, for x ∈ Ω

}
and HT :=

{
g|Σ : g ∈ H1

(
0, T ;H1(Ω)

)
and g(T, x) = 0, for x ∈ Ω

}
.

As shown in [14] (see also [45]) that for f ∈ K0, Equation (1.1) admits a unique solution u ∈
H1 (0, T ;H−1(Ω)) ∩ L2 (0, T ;H1(Ω)) and the operator NA,qu given by

〈NA,qu,w|Σ〉 :=

∫
Q

(
−u∂tw +∇xu · ∇xw + 2uA · ∇xw + (∇x · A)uw − |A|2uw + quw

)
dxdt

1
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is well-defined for w ∈ H1(Q) such that w(T, x) = 0, for x ∈ Ω. Note that if A, q and f are smooth
enough then NA,qu is given by

NA,qu = (∂νu+ 2 (ν · A)u) |Σ

where ν stands for the outward unit normal vector to ∂Ω and u solution to (1.1). Motivated by
this and [14], we define the Dirichlet to Neumann (DN) map ΛA,q : K0 → H∗T by

ΛA,q(f) := NA,qu (1.2)

where H∗T denotes the dual of space HT and u is solution to (1.1) with Dirichlet boundary data
equal to f . Then from ([14], see Section 2), we have that DN map ΛA,q defined by (1.2) is continuous
from K0 to H∗T .

In the present article we first consider the problem of unique recovery of coefficients A(x) and
q(t, x) appearing in (1.1) from the information of DN map ΛA,q measured on a subset of Σ. It is well-
known [see [53]] that one cannot determine coefficient A(x) uniquely from DN map ΛA,q measured
on Σ and this is because of the gauge invariance associated with A(x). So one can only hope
to recover A(x) uniquely upto a potential term however the coefficient q(t, x) can be determined
uniquely (see Theorem 2.1 in §2 for more details). Later as a corollary of Theorem 2.1, we consider
the problem of determining time-dependent coefficients A(t, x) and q(t, x) appearing in (1.1) from
the partial information of DN map ΛA,q. Using some extra assumption on A(t, x) and Theorem 2.1,
we show that time-dependent coefficients A(t, x) and q(t, x) can be determined uniquely from the
knowledge of DN map ΛA,q measured on a part of Σ (see Corollary 2.2 below in §2 for more details).

The initial boundary value problem (1.1) is known as a convection-diffusion equation with con-
stant diffusion. The coefficients A and q are called convection term and density coefficient re-
spectively. The convection-diffusion equations appear in chemical engineering, heat transfer and
probabilistic study of diffusion process etc.

Determination of the coefficients from boundary measurements appearing in parabolic partial
differential equations have been studied by several authors. Isakov in [33] considered the problem of
determining time-independent coefficient q for the case when A = 0 in (1.1) from the DN map and
he proved the uniqueness result by showing the density of product of solutions (inspired by the work
of [54]) in some Lebesgue space. Avdonin and Seidman in [2] studied the problem of determining
time-independent density coefficient q(x) appearing in (1.1) by using the boundary control method
pioneered by Belishev, Kurylev, Lassas and others see [1, 4, 37] and references therein. In [23]
Choulli proved the stability estimate analogous to the uniqueness problem considered in [33]. In
[25] problem of determining the first order coefficients appearing in a parabolic equations in one
dimension from the data measured at final time is studied. Cheng and Yamamoto in [16] proved
the unique determination of convection term A(x) (when q = 0 in (1.1)) from a single boundary
measurement in two dimension. Gaitan and Kian [30] using the global Carleman estimate used for
hyperbolic equations [see [12]] proved the stable determination of time-dependent coefficient q(t, x)
in a bounded waveguide. Choulli and Kian in [21] proved the stability estimate for determining
time-dependent coefficient q from the partial DN map. For more works related to parabolic inverse
problems, we refer to [8, 18, 19, 20, 22, 23, 25, 30, 34, 35, 46] and the references therein. We also
mention the work of [3, 5, 9, 11, 27, 41, 42, 43] related to dynamical Schrödinger equation and
the work of [10, 28, 29, 49, 50, 51] for hyperbolic inverse problems. We refer to [15, 17, 47] for
steady state convection-diffusion equation. Recently Caro and Kian in [14] established the unique
determination of convection coefficient together with non-linearity term appearing in the equation
from the knowledge of DN map measured on Σ.
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Inspired by the work of [21], we consider the problem of determining the full first order space
derivative perturbation of heat operator from the partial DN map. We have proved our uniqueness
result by using the geometric optics solutions constructed using a Carleman estimate in a Sobolev
space of negative order and inverting the ray transform of a vector field which is known only in
a very small neighbourhood of fixed direction ω0 ∈ Sn−1 := {x ∈ Rn : ‖x‖ = 1}. For elliptic and
hyperbolic inverse problems these kind of techniques have been used by several authors. Related
to our work, we refer to [13, 26] for the elliptic case and to [6, 7, 32, 36, 38, 39, 40, 44] for the
hyperbolic case.

The article is organized as follows. In §2 we give the statement of the main result. §3 contains the
boundary Carleman estimate. In §4 we construct the geometric optics solutions using a Carleman
estimate in a Sobolev space of negative order. In §5 we derive an integral identity and §6 contains
the proof of main Theorem 2.1 and Corollary 2.2.

2. Statement of the main result

We begin this section by fixing some notation which will be used to state the main result of this
article. Following [13] fix an ω0 ∈ Sn−1 and define the ω0-shadowed and ω0-illuminated faces by

∂Ω+,ω0 := {x ∈ ∂Ω : ν(x) · ω0 ≥ 0} , ∂Ω−,ω0 := {x ∈ ∂Ω : ν(x) · ω0 ≤ 0}

of ∂Ω where ν(x) is outward unit normal to ∂Ω at x ∈ ∂Ω. Corresponding to ∂Ω±,ω0 , we denote the
lateral boundary parts by Σ±,ω0 := (0, T )×∂Ω±,ω0 . We denote by F = (0, T )×F ′ and G = (0, T )×G′
where F ′ and G′ are small enough open neighbourhoods of ∂Ω+,ω0 and ∂Ω−,ω0 respectively in ∂Ω.

Since Ω is bounded and T <∞, so we can choose a smallest R > 0 such that Q ⊂ B(0, R) where
B(0, R) ⊂ R1+n is a ball of radius R with center at origin. Now we define admissible set A of vector
fields A(t, x) appearing in (1.1) by

A :=
{
A ∈ W 1,∞(Q) : ‖A‖∞ ≤

1

9R

}
. (2.1)

We first prove the uniqueness result for time-independent convection coefficient A ∈ A and time-
dependent density coefficient q. More precisely we prove the following theorem:

Theorem 2.1. Let
(
A(1), q1

)
and

(
A(2), q2

)
be two sets of coefficients such that A(i) ∈ A are time-

independent and qi ∈ L∞(Q) for i = 1, 2. Let ui be the solutions to (1.1) when (A, q) =
(
A(i), qi

)
and ΛA(i),qi for i = 1, 2 be the DN maps defined by (1.2) corresponding to ui. Now if

ΛA(1),q1(f)|G = ΛA(2),q2(f)|G, for f ∈ L2
(
0, T ;H1/2(∂Ω)

)
(2.2)

then there exists a function Φ ∈ W 2,∞
0 (Ω) such that

A(1)(x)− A(2)(x) = ∇xΦ(x), x ∈ Ω

and

q1(t, x) = q2(t, x), (t, x) ∈ Q
provided A(1)(x) = A(2)(x) for x ∈ ∂Ω.

In Theorem 2.1 if we take some extra assumption on convection term A(i) then we can prove
the uniqueness result for full recovery of A(i) even for the case when A(i) ∈ A for i = 1, 2 are
time-dependent. The precise statement of this is given in the following Corollary.
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Corollary 2.2. Let
(
A(1), q1

)
and

(
A(2), q2

)
be two sets of time-dependent coefficients such that

A(i) ∈ A and qi ∈ L∞(Q) for i = 1, 2. Let ui be the solutions to (1.1) when (A, q) =
(
A(i), qi

)
and

ΛA(i),qi for i = 1, 2 be the DN maps defined by (1.2) corresponding to ui. Now if

∇x · A(1)(t, x) = ∇x · A(2)(t, x), (t, x) ∈ Q (2.3)

and

ΛA(1),q1(f)|G = ΛA(2),q2(f)|G, f ∈ L2
(
0, T ;H1/2(∂Ω)

)
then we have

A(1)(t, x) = A(2)(t, x) and q1(t, x) = q2(t, x), (t, x) ∈ Q
provided A(1)(t, x) = A(2)(t, x) for (t, x) ∈ Σ.

Remark 2.3. The additional assumption (2.3) on convection term A(i) in Corollary 2.2 have been
considered in prior works as well. See for example [9, 24] for the determination of vector field term
appearing in the dynamical Schrödinger equation and also in [14] for non-linear parabolic equation.

3. Boundary Carleman estimate

In this section we prove a Carleman estimate involving the boundary terms for the operator LA,q.
We will use this estimate to control the boundary terms appearing in integral identity given by
(5.9) where no information is given.

Theorem 3.1. Let ϕ(t, x) = λ2t+ λω · x where ω ∈ Sn−1 is fixed. Let u ∈ C2(Q) such that

u(0, x) = 0, for x ∈ Ω and u(t, x) = 0, for (t, x) ∈ Σ.

If A ∈ A and q ∈ L∞(Q) then there exists C > 0 depending only on Ω, T, q and A such that

λ2

∫
Q

e−2ϕ|u(t, x)|2dxdt+

∫
Q

e−2ϕ|∇xu(t, x)|2dxdt+

∫
Ω

e−2ϕ(T,x)|u(T, x)|2dx

+ λ

∫
Σ+,ω

e−2ϕ|∂νu(t, x)|2|ω · ν(x)|dSxdt ≤ C

∫
Q

e−2ϕ|LA,qu(t, x)|2dxdt

+ Cλ

∫
Σ−,ω

e−2ϕ|∂νu(t, x)|2 |ω · ν(x)|dSxdt

(3.1)

holds for λ large.

Proof. Let

Lϕ := e−ϕLA,qeϕ (3.2)

and denote by

q̃(t, x) := q(t, x)−∇x · A(t, x)− |A(t, x)|2.

Then

Lϕv(t, x) = e−ϕ (∂t −∆− 2A(t, x) · ∇x + q̃(t, x)) (eϕv(t, x))

= (∂t −∆− 2∇xϕ · ∇x) v(t, x) +
(
∂tϕ− |∇xϕ|2 −∆ϕ

)
v(t, x)

− 2 (A(t, x) · ∇x − 2A(t, x) · ∇xφ) v(t, x) := (P1v + P2v + P3v) (t, x)

(3.3)
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where

P1 := −∆ + ∂tϕ− |∇ϕ|2 −∆ϕ = −∆

P2 := ∂t − 2∇xϕ · ∇x = ∂t − 2λω · ∇x

P3 := −2A(t, x) · ∇x − 2A(t, x) · ∇xϕ+ q̃(t, x) = −2A(t, x) · ∇x − 2λω · A(t, x) + q̃(t, x).

(3.4)

Now let

I :=

∫
Q

|Lϕv(t, x)|2dxdt ≥ 1

2

∫
Q

|(P1 + P2) v(t, x)|2dxdt−
∫
Q

|P3v(t, x)|2dxdt := I1 − I2 (3.5)

where

I1 :=
1

2

∫
Q

|(P1 + P2) v(t, x)|2dxdt and I2 :=

∫
Q

|P3v(t, x)|2dxdt.

Next we estimate each of Ij for j = 1, 2. Now I1 is

I1 =
1

2

∫
Q

|P1v(t, x)|2 +
1

2

∫
Q

|P2v(t, x)|2dxdt+

∫
Q

P1v(t, x) P2v(t, x)dxdt.

We consider each term separately on right hand side of the above equation. Using integration by
parts and the fact that v|Σ = 0, we have∫

Q

|∇xv(t, x)|2dxdt = −
∫
Q

v(t, x)∆v(t, x)dxdt ≤ 1

2s

∫
Q

|∆v(t, x)|2dxdt+
s

2

∫
Q

|v(t, x)|2dxdt

holds for any s > 0. Thus we have∫
Q

|P1v(t, x)|2dxdt ≥ 2s

∫
Q

|∇v(t, x)|2dxdt− s2

∫
Q

|v(t, x)|2dxdt. (3.6)

Following the proof of [21, Lemma 3.1] we have∫
Q

|P2v(t, x)|2dxdt ≥ 1 + 4λ2

16R2

∫
Q

|v(t, x)|2dxdt (3.7)

where R > 0 is the radius of smallest ball B(0, R) ⊂ R1+n such that Q ⊆ B(0, R). Now consider

2

∫
Q

P1v(t, x) P2v(t, x)dxdt = −2

∫
Q

∆v(t, x)∂tv(t, x)dxdt+ 2λ

∫
Q

∆v(t, x)ω · ∇xv(t, x)dxdt

=

∫
Ω

|∇v(T, x)|2dx+ λ

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt.

(3.8)

Combining Equations (3.6),(3.7) and (3.8) we get

I1 ≥ s

∫
Q

|∇v(t, x)|2dxdt− s2

2

∫
Q

|v(t, x)|2dxdt+
1 + 4λ2

32R2

∫
Q

|v(t, x)|2dxdt

+
1

2

∫
Ω

|∇v(T, x)|2dx+
λ

2

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt.

(3.9)



6 SAHOO AND VASHISTH

Next we estimate I2.

I2 ≤
∫
Q

∣∣∣(− 2A(t, x) · ∇x − 2λω · A(t, x) + q̃(t, x)
)
v(t, x)

∣∣∣2dxdt

≤ 2‖q̃‖2
∞

∫
Q

|v(t, x)|2dxdt+ 8λ2‖A‖2
∞

∫
Q

|v(t, x)|2dxdt+ 8‖A‖2
∞

∫
Q

|∇v(t, x)|2dxdt.

(3.10)

Using (3.9) and (3.10) in (3.5) we get

I ≥ s

∫
Q

|∇xv(t, x)|2dxdt− s2

2

∫
Q

|v(t, x)|2dxdt+
1 + 4λ2

32R2

∫
Q

|v(t, x)|2dxdt

+
1

2

∫
Ω

|∇xv(T, x)|2dx+
λ

2

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt− 2‖q̃‖2
∞

∫
Q

|v(t, x)|2dxdt

− 8λ2‖A‖2
∞

∫
Q

|v(t, x)|2dxdt− 8‖A‖2
∞

∫
Q

|∇xv(t, x)|2dxdt.

≥
(

1 + 4λ2

32R2
− s2

2
− 2‖q̃‖2

∞ − 8λ2‖A‖2
∞

)∫
Q

|v(t, x)|2dxdt+
(
s− 8‖A‖2

∞
) ∫
Q

|∇xv(t, x)|2dxdt

+
1

2

∫
Ω

|∇xv(T, x)|2dx+
λ

2

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt.

Now since ‖A‖∞ ≤ 1
9R

, therefore taking λ large enough and using the Poincaré inequality, we have∫
Q

|Lϕv(t, x)|2dxdt ≥ C

(
λ2

∫
Q

|v(t, x)|2dxdt+

∫
Q

|∇xv(t, x)|2dxdt

+
1

2

∫
Ω

|v(T, x)|2dx+ λ

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt

) (3.11)

holds for large λ and C > 0 depending only on Q, A and q̃. Now after substituting v(t, x) =
e−ϕ(t,x)u(t, x) in (3.11), we get

λ2

∫
Q

e−2ϕ|u(t, x)|2dxdt+

∫
Q

e−2ϕ|∇xu(t, x)|2dxdt+

∫
Ω

e−2ϕ(T,x)|u(T, x)|2dx

+ λ

∫
Σ+,ω

e−2ϕ|∂νu(t, x)|2|ω · ν(x)|dSxdt ≤ C

∫
Q

e−2ϕ|LA,qu(t, x)|2dxdt

+ Cλ

∫
Σ−,ω

e−2ϕ|∂νu(t, x)|2 |ω · ν(x)|dSxdt.

This completes the proof of Carleman estimate given by (3.1). �
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4. Construction of geometric optics solutions

In this section, we construct the exponentially growing solution to

LA,qu(t, x) = 0, (t, x) ∈ Q
and exponentially decaying solution to

L∗A,qu(t, x) = 0, (t, x) ∈ Q
where L∗A,q given by

L∗A,q := −∂t −
n∑
j=1

(∂j − Aj(t, x))2 + q̃∗(t, x)

is a formal L2 adjoint of the operator LA,q. We construct these solutions by using a Carleman
estimate in a Sobolev space of negative order as used in [26] for elliptic case and in [39, 44] for
hyperbolic case. Before going further following [39] we will give some definition and notation, which
will be used later. For m ∈ R, define space L2 (0, T ;Hm

λ (Rn)) by

L2 (0, T ;Hm
λ (Rn)) :=

{
u(t, ·) ∈ S ′(Rn) :

(
λ2 + |ξ|2

)m/2
û(t, ξ) ∈ L2(Rn)

}
with the norm

‖u‖2
L2(0,T ;Hm

λ (Rn)) :=

T∫
0

∫
Rn

(
λ2 + |ξ|2

)m |û(t, ξ)|2dξdt

where S ′(Rn) denote the space of all tempered distribution on Rn and û(t, ξ) is the Fourier transform
with respect to space variable x ∈ Rn. We define by

〈Dx, λ〉mu = F−1
x

{(
λ2 + |ξ|2

)m/2Fxu}
here Fx and F−1

x denote the Fourier transform and inverse Fourier transform respectively with
respect to space variable x ∈ Rn. With this we define the symbol class Smλ (Rn) of order m by

Smλ (Rn) :=
{
Cλ ∈ C∞(Rn × Rn) : |∂αx∂

β
ξ cλ(x, ξ)| ≤ Cα,β

(
λ2 + |ξ|2

)m−|β|
, for multi-indices α, β ∈ Nn

}
.

With these notations and definitions, we state the main theorem of this section.

Theorem 4.1. (1) (Exponentially growing solutions) Let LA,q be as defined above. Then for λ
large there exists v ∈ H1 (0, T ;H−1(Ω)) ∩ L2 (0, T ;H1(Ω)) a solution to{

LA,qv(t, x) = 0, (t, x) ∈ Q,
v(0, x) = 0, x ∈ Ω

of the following form

vg(t, x) = eϕ
(
Bg(t, x) +Rg(t, x, λ)

)
(4.1)

where for χ ∈ C∞c ((0, T )) arbitrary, we have

Bg(t, x) = χ(t)e−i(tτ+x·ξ) exp

(∫ ∞
0

ω · A(t, x+ sω)ds

)
(4.2)

and Rg(t, x, λ) satisfies the following

Rg(0, x, λ) = 0, for x ∈ Ω and ‖Rg‖L2(0,T ;H1
λ(Rn)) ≤ C. (4.3)
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(2) (Exponentially decaying solutions) Let L∗A,q be as before. Then for λ large there exists v ∈
H1 (0, T ;H−1(Ω)) ∩ L2 (0, T ;H1(Ω)) a solution to{

L∗A,qv(t, x) = 0, (t, x) ∈ Q,
v(T, x) = 0, x ∈ Ω

of the following form

vd(t, x) = e−ϕ
(
Bd(t, x) +Rd(t, x, λ)

)
(4.4)

where for χ ∈ C∞c ((0, T )) arbitrary, we have

Bd(t, x) = χ(t) exp

(
−
∫ ∞

0

ω · A(t, x+ sω)ds

)
(4.5)

and Rd(t, x, λ) satisfies the following

Rd(T, x, λ) = 0, for x ∈ Ω and ‖Rd‖L2(0,T ;H1
λ(Rn)) ≤ C. (4.6)

Proof of the above theorem is based on a Carleman estimate in a Sobolev space of negative order.
To prove the Carleman estimate stated in Proposition 4.2, we follow the arguments similar to one
used in [26, 39, 44] for elliptic and hyperbolic inverse problems.

Proposition 4.2. Let ϕ,A and q be as in Theorem 3.1. Then for λ large enough, we have

(1) (Interior Carleman estimate for L∗ϕ ) Let L∗ϕ := eϕL∗A,qe−ϕ, then there exists a constant
C > 0 independent of λ and v such that

‖v‖L2(0,T ;L2(Rn)) ≤ C‖L∗ϕv‖L2(0,T ;H−1
λ (Rn)), (4.7)

holds for v ∈ C1 ([0, T ];C∞c (Ω)) satisfying v(T, x) = 0 for x ∈ Ω.
(2) (Interior Carleman estimate for Lϕ ) Let Lϕ be as before then there exists a constant C > 0

independent of λ and v such that

‖v‖L2(0,T ;L2(Rn)) ≤ C‖Lϕv‖L2(0,T ;H−1
λ (Rn)) (4.8)

holds for v ∈ C1 ([0, T ];C∞c (Ω)) satisfying v(0, x) = 0 for x ∈ Ω.

Proof. (1) (Proof for (4.7)) Since

L∗ϕ = eϕL∗A,qe−ϕ

therefore we have

L∗ϕv = eϕ
(
− ∂t −∆ + 2A(t, x) · ∇x + q̃∗(t, x)

)
e−ϕv(t, x)

=
[
− ∂t −∆ + 2A(t, x) · ∇x + q̃∗(t, x)− 2λω · A(t, x) + 2λω · ∇x

]
v(t, x)

where

q̃∗(t, x) := q(t, x) +∇x · A(t, x)− |A(t, x)|2.
Writing L∗ϕ as

L∗ϕv := P ∗1 v + P ∗2 v + P ∗3 v

where

P ∗1 := −∆, P ∗2 := −∂t + 2λω · ∇x and P ∗3 := 2A(t, x) · ∇x − 2λω · A(t, x) + q̃∗(t, x). (4.9)
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Now from (3.4), we have P ∗1 = P1 and P ∗2 = −P2. Hence using the arguments similar to
Theorem 3.1, we have∫

Q

|∇v(t, x)|2dxdt+ λ2

∫
Q

|v(t, x)|2dxdt ≤ C

∫
Q

|L∗ϕv(t, x)|2dxdt

for some constant C > 0 independent of λ and v. The above estimate can be written in
compact form as

‖v‖L2(0,T ;H1
λ(Rn)) ≤ C‖L∗ϕv‖L2(Q), for some constant C independent of λ and v. (4.10)

Next using the pseudodifferential operators techniques, we shift the index by −1 in the

above estimate. Let us denote by Ω̃ a bounded open subset of Rn such that Ω ⊂ Ω̃. Fix
w ∈ C1 ([0, T ];C∞c (Ω)) satisfying w(T, x) = 0 and consider the following

〈Dx, λ〉−1(P ∗1 + P ∗2 )〈Dx, λ〉w.

Using the composition of pseudodifferential operators [31, Theorem 18.1.8] we have

〈Dx, λ〉−1(P ∗1 + P ∗2 )〈Dx, λ〉w = (P ∗1 + P ∗2 )w. (4.11)

Using (4.11) and (3.9) we have

‖(P ∗1 + P ∗2 )〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) = ‖〈Dx, λ〉−1(P ∗1 + P ∗2 )〈Dx, λ〉w‖L2(0,T ;L2(Rn))

= ‖(P ∗1 + P ∗2 )w‖L2(0,T ;L2(Rn)) ≥
√
s‖∇w‖L2(0,T ;L2(Rn)) + λ‖w‖L2(0,T ;L2(Rn))

(4.12)

holds for λ large. Now consider

‖P ∗3 〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) ≤ 2

(
‖(λω · A(t, x)〈Dx, λ〉w‖L2(0,T ;H−1

λ (Rn))

+ ‖A(t, x) · ∇x〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) + ‖q̃∗w‖L2(0,T ;H−1

λ (Rn))

)
.

Using the boundedness of the coefficients, we have

‖P ∗3 〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) ≤ 2

(
λ‖A‖∞‖w‖L2(0,T ;L2(Rn))

+ ‖A‖∞‖∇w‖L2(0,T ;L2(Rn)) + ‖q̃‖∞‖w‖L2(0,T ;L2(Rn))

)
.

Hence using the inequality as used in (3.5) we get

‖L∗ϕ〈D,λ〉w‖L2(0,T ;H−1
λ (Rn)) ≥ C‖w‖ L2

(0,T ;H1
λ(Rn))

.

Now let χ ∈ C∞c (Ω̃) such that χ = 1 in Ω1 where Ω ⊂ Ω1 ⊂ Ω̃. Fix w = χ〈D,λ〉−1v in the
above equation and using

‖(1− χ)〈D,λ〉−1v‖L2(0,T ;Hm
λ (Rn)) ≤

C

λ2
‖v‖L2(0,T ;L2(Rn))
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and

‖v‖L2(0,T ;L2(Rn)) = ‖〈D,λ〉−1v‖L2(0,T ;H1
λ(Rn))

≤ ‖w‖L2(0,T ;H1
λ(Rn)) + ‖(1− χ)〈D,λ〉−1v‖L2(0,T ;H1

λ(Rn))

≤ ‖w‖L2(0,T ;H1
λ(Rn)) +

C

λ2
‖v‖L2(0,T ;L2(Rn))

we get

‖L∗ϕv‖L2(0,T ;H−1
λ (Rn)) ≥ ‖L

∗
ϕ〈D,λ〉w‖L2(0,T ;H−1

λ (Rn)) −
C

λ2
‖v‖L2(0,T ;L2(Rn))

≥ ‖w‖L2(0,T ;H1
λ(Rn)) −

C

λ2
‖v‖L2(0,T ;L2(Rn)) ≥ C‖v‖L2(0,T ;L2(Rn))

for large λ. Thus finally, we have

‖v‖L2(0,T ;L2(Rn)) ≤ C‖L∗ϕv‖L2(0,T ;H−1
λ (Rn))

holds for v ∈ C1 ([0, T ];C∞c (Ω)) such that v(T, x) = 0 and λ large.
(2) (Proof for (4.8)) follows by exactly the same argument as that for (4.7).

�

Proposition 4.3. Let ϕ, A and q be as in Theorem 3.1.

(1) (Existence of solution to LA,q ) For λ > 0 large enough and v ∈ L2(Q) there exists a solution
u ∈ H1 (0, T ;H−1(Ω)) ∩ L2 (0, T ;H1(Ω)) of{

Lϕu(t, x) = v(t, x), (t, x) ∈ Q,
u(0, x) = 0; x ∈ Ω

and it satisfies

‖u‖L2(0,T ;H1(Ω)) ≤ C‖v‖L2(Q) (4.13)

where C > 0 is a constant independent of λ.
(2) (Existence of solution to L∗A,q) For λ > 0 large enough and v ∈ L2(Q) there exists a solution

u ∈ H1 (0, T ;H−1(Ω)) ∩ L2 (0, T ;H1(Ω)) of{
L∗ϕu(t, x) = v(t, x), (t, x) ∈ Q,
u(T, x) = 0, x ∈ Ω

and it satisfies

‖u‖L2(0,T ;H1(Ω)) ≤ C‖v‖L2(Q) (4.14)

where C > 0 is a constant independent of λ.

Proof. We will give the proof for existence of solution to LA,q and the proof for L∗A,q follows by
using similar arguments. The proof is based on the standard functional analysis arguments.
Consider the space S := {L∗ϕu : u ∈ C1 ([0, T ];C∞c (Ω)) and u(T, x) = 0} as a subspace of

L2
(
0, T ;H−1

λ (Rn)
)
. Define the linear operator T on S by

T (L∗ϕz) =

∫
Q

z(t, x)v(t, x)dtdx, for v ∈ L2(Q).
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Now using the Carleman estimates (4.7), we have

|T (L∗ϕz)| ≤ ‖z‖L2(Q)‖v‖L2(Q) ≤ C‖v‖L2(Q)‖L∗ϕz‖L2(0,T ;H−1
λ (Rn))

holds for z ∈ C1 ([0, T ];C∞c (Ω)) with z(T, x) = 0. Hence using the Hahn-Banach theorem,
we can extend the linear operator T to L2

(
0, T ;H−1

λ (Rn)
)
. We denote the extended map as

T and it satisfies
‖T‖ ≤ C‖v‖L2(Q).

Since T is bounded linear functional on L2
(
0, T ;H−1

λ (Rn)
)

therefore using the Riesz repre-
sentation theorem there exists a unique u ∈ L2(0, T ;H1

λ(Rn)) such that

T (f) = 〈f, u〉L2(0,T ;H−1
λ (Rn)),L2(0,T ;H1

λ(Rn)) for f ∈ L2
(
0, T ;H−1

λ (Rn)
)

(4.15)

with ‖u‖L2(0,T ;H1
λ(Rn)) ≤ C‖v‖L2(Q). Now for z ∈ C1 ([0, T ];C∞c (Ω)) satisfying z(T, x) = 0.

Choosing f = L∗ϕz in the above equation, we get Lϕu = v. Using the expression for

Lϕ from (3.3) and the fact that u ∈ L2 (0, T ;H1(Ω)) and v ∈ L2(Q), we get that ∂tu ∈
L2 (0, T ;H−1(Ω)). Hence we have u ∈ H1 (0, T ;H−1(Ω)) ∩ L2 (0, T ;H1(Ω)).

Next we will show that u(0, x) = 0 for x ∈ Ω. To prove this we choose f = L∗ϕz where

z ∈ C1 ([0, T ];C∞c (Ω)) and z(T, x) = 0. Using this choice of f in (4.15), we have∫
Q

L∗ϕz(t, x)u(t, x)dxdt =

∫
Q

z(t, x)v(t, x)dxdt.

Now using integration by parts and the fact that Lϕu = v, we get∫
Ω

u(0, x)z(0, x)dx = 0.

The above identity holds for any z ∈ C1 ([0, T ];C∞c (Ω)) satisfying z(T, x) = 0. Therefore,
we conclude that u(0, x) = 0 for x ∈ Ω. This completes the proof of first part of Proposition
4.3 .

�

4.1. Proof of the Theorem 4.1. Using expressions vg and Bg from (4.1) and (4.2) respectively
and

LA,qvg(t, x) = 0,

we have the equation for Rg is

LϕRg(t, x, λ) = −LA,qBg(t, x),

where LA,qBg(t, x) ∈ L2(Q). Next using Proposition 4.3, there exists Rg ∈ L2 (0, T ;H1(Ω)) ∩
H1 (0, T ;H−1(Ω)) solution to{

LϕRg(t, x, λ) = −LA,qBg(t, x), (t, x) ∈ Q,
Rg(0, x, λ) = 0, x ∈ Ω

and it satisfies the following estimate

‖Rg‖L2(0,T ;H1(Ω)) ≤ C

where C is a constant independent of λ. This completes the construction of solution for LA,qu = 0
and existence of the solution for L∗A,qv = 0, follows in a similar way.
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5. Integral identity

This section is devoted to proving an integral identity which will be used to prove the main result
of this article. We derive this identity by using the geometric optics solutions constructed in §4.
Let ui be the solutions to the following initial boundary value problems with vector field coefficient
A(i) and scalar potential qi for i = 1, 2.

LA(i),qiui(t, x) = 0, (t, x) ∈ Q
ui(0, x) = 0, x ∈ Ω

ui(t, x) = f(t, x), (t, x) ∈ Σ.

(5.1)

Let us denote

u(t, x) := (u1 − u2) (t, x)

A(t, x) :=
(
A(1) − A(2)

)
(t, x) := (A1(t, x), · · · , An(t, x))

q̃i(t, x) := −∇x · A(i)(t, x)− |A(i)(t, x)|2 + qi(t, x) (5.2)

q̃(t, x) := q̃1(t, x)− q̃2(t, x).

Then u is solution to the following initial boundary value problem:
LA(1),q1u(t, x) = 2A(t, x) · ∇xu2(t, x) + q̃u2(t, x), (t, x) ∈ Q
u(0, x) = 0, x ∈ Ω

u(t, x) = 0, (t, x) ∈ Σ.

(5.3)

Let v(t, x) of the form given by (4.4) be the solution to following equation

L∗A(1),q1
v(t, x) = 0, (t, x) ∈ Q. (5.4)

Also let u2 of the form given by (4.1) be solution to the following equation

LA(2),q2u2(t, x) = 0, (t, x) ∈ Q. (5.5)

Since the right hand side of (5.3) lies in L2(Q) therefore using ([23], Theorem 1.43) we have u ∈
L2 (0, T ;H2(Ω)) ∩H1 (0, T ;L2(Ω)) and ∂νu ∈ L2

(
0, T ;H1/2(Σ)

)
. Next consider the following〈 (

ΛA(1),q1 − ΛA(2),q2

)
(f), v|Σ

〉
H∗T ,HT

=
〈
NA(1),q1u1 −NA(2),q2u2, v|Σ

〉
H∗T ,HT

=

∫
Q

(
−u1∂tv +∇xu1 · ∇xv + 2u1A

(1) · ∇xv + (∇x · A(1))u1v − |A(1)|2u1v + q1u1v
)

dxdt

−
∫
Q

(
−u2∂tv +∇xu2 · ∇xv + 2u2A

(2) · ∇xv + (∇x · A(2))u2v − |A(2)|2u2v + q2u2v
)

dxdt.

After following the arguments used in [[14], see Proposition 2.3], we get that〈 (
ΛA(1),q1 − ΛA(2),q2

)
(f), v|Σ

〉
H∗T ,HT

=

∫
Q

(2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x)) v(t, x)dxdt.

(5.6)
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Also multiplying (5.3) by v(t, x) and integrating over Q, we have∫
Q

(2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x)) v(t, x)dxdt =

∫
Q

LA(1),q1u(t, x)v(t, x)dxdt

=

∫
Q

u(t, x)L∗
A(1),q1

v(t, x)dxdt−
∫
Σ

∂νu(t, x)v(t, x)dSxdt+

∫
Ω

u(T, x)v(T, x)dx

where in deriving the above identity we have used the following: u|Σ = 0, u|t=0 = 0 and A(1) = A(2)

on Σ. Now using Equation (5.6) and the fact that L∗
A(1),q1

v(t, x) = 0 in Q, with v(T, x) = 0 in Ω,
we get, 〈 (

ΛA(1),q1 − ΛA(2),q2

)
(f), v|Σ

〉
H∗T ,HT

= −
∫
Σ

∂νu(t, x)v(t, x)dSxdt. (5.7)

This gives us (
ΛA(1),q1 − ΛA(2),q2

)
(f)|Σ = −∂νu|Σ. (5.8)

Using (2.2), we have ∂νu|G = 0. Finally using Equations (5.7), (5.8) and ∂νu|G = 0, in (5.6), we get∫
Q

(2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x)) v(t, x)dxdt = −
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt. (5.9)

Next we need to estimate the right hand side of above equation. This we will do in the following
lemma:

Lemma 5.1. Let ui for i = 1, 2 solutions to (5.1) with u2 of the form (4.1). Let u = u1 − u2 and
v be of the form (4.4). Then ∣∣∣ ∫

Σ\G

∂νu(t, x)v(t, x)dSxdt
∣∣∣ ≤ Cλ1/2

(5.10)

for all ω ∈ Sn−1 such that |ω − ω0| ≤ ε.

Proof. Using the expression of v from (4.4), in the right-hand side of (5.9), we have∣∣∣ ∫
Σ\G

∂νu(t, x)v(t, x)dSxdt
∣∣∣2 ≤ ∣∣∣ ∫

Σ\G

∂νu(t, x)e−ϕ(t,x)
(
Bd(t, x) +Rd(t, x)

)
dSxdt

∣∣∣2
≤ C

(
1 + ‖Rd‖2

L2(Σ)

) ∫
Σ\G

e−2ϕ(t,x)|∂νu(t, x)|2dSxdt

≤ C
(
1 + ‖Rd‖L2(0,T ;H1(Ω))

) ∫
Σ\G

e−2ϕ(t,x)|∂νu(t, x)|2dSxdt

where in the last step of above inequality we have used the trace theorem. Now using Equation
(4.6), we get ∣∣∣ ∫

Σ\G

∂νu(t, x)v(t, x)dSxdt
∣∣∣2 ≤ C

∫
Σ\G

e−2ϕ(t,x)|∂νu(t, x)|2dSxdt.
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For ε > 0, define

∂Ω+,ε,ω := {x ∈ ∂Ω : ν(x) · ω > ε} and Σ+,ε,ω := (0, T )× ∂Ω+,ε,ω

then from the definition of G it follows that Σ \G ⊆ Σ+,ε,ω for all ω with |ω − ω0| ≤ ε. Using this
we obtain ∫

Σ\G

e−2ϕ(t,x)|∂νu(t, x)|2dSxdt ≤
∫

Σ+,ε,ω

e−2ϕ(t,x)|∂νu(t, x)|2dSxdt

=
1

λε

∫
Σ+,ε,ω

λεe−2ϕ(t,x)|∂νu(t, x)|2dSxdt, for ω ∈ Sn−1 near ω0 ∈ Sn−1.

Now λε ≤ ∂νϕ(t, x) for (t, x) ∈ Σ+,ε,ω and ω ∈ Sn−1 with |ω−ω0| ≤ ε. Using this in above equation,
we get ∫

Σ\G

e−2ϕ(t,x)|∂νu(t, x)|2dSxdt ≤
1

λε

∫
Σ+,ε,ω

∂νϕe
−2ϕ(t,x)|∂νu(t, x)|2dSxdt,

for ω ∈ Sn−1near ω0 ∈ Sn−1. Now using the Carleman estimate (3.1) and Equation (5.3), we get∣∣∣ ∫
Σ\G

∂νu(t, x)v(t, x)dSxdt
∣∣∣2 ≤ Cλ−1

∫
Q

e−2ϕ(t,x)|(2A(t, x) · ∇u2(t, x) + q̃(t, x)u2(t, x))|2dxdt.

(5.11)

Using expression for u2 from (4.1) and Equation (4.3), we have∫
Q

e−2ϕ(t,x)|(2A(t, x) · ∇u2(t, x) + q̃(t, x)u2(t, x))|2dxdt ≤ Cλ2.

Hence using this in (5.11), we get∣∣∣ ∫
Σ\G

∂νu(t, x)v(t, x)dSxdt
∣∣∣ ≤ Cλ1/2, for ω ∈ Sn−1 such that |ω − ω0| ≤ ε.

This completes the proof of lemma. �

6. Proof of theorem 2.1 and Corollary 2.2

In this section, we prove the uniqueness results. Since from (5.9), we have∫
Q

(2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x)) v(t, x)dxdt = −
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt.

Now using Equation (5.10), we have∣∣∣ ∫
Q

(2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x)) v(t, x)dxdt
∣∣∣ ≤ Cλ1/2.
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After dividing the above equation by λ and taking λ→∞, we have

lim
λ→∞

1

λ

∫
Q

(2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x)) v(t, x)dxdt

 = 0. (6.1)

Next using the expression for u2 and v from (4.1) and (4.4) respectively, we have∫
Q

ω · A(t, x)Bg(t, x)Bd(t, x)dxdt = 0, for all ω ∈ Sn−1 such that |ω − ω0| ≤ ε.

This after using the expressions for Bg(t, x) and Bd(t, x) from Equations (4.2) and (4.5) respectively,
we get ∫

Q

ω · A(t, x)χ2(t)e−iξ·x−iτt exp

− ∞∫
0

ω · A(t, x+ sω)ds

 dxdt = 0, (6.2)

for ω ∈ Sn−1 with |ω − ω0| ≤ ε. Since the above identity holds for all χ ∈ C∞c (0, T ), therefore we
get ∫

Rn

ω · A(t, x)(x)e−iξ·x exp

− ∞∫
0

ω · A(t, x+ sω)ds

 dx = 0 (6.3)

where ξ · ω = 0 for all ω with |ω − ω0| ≤ ε. Now decompose Rn = Rω ⊕ ω⊥ and using this in the
above equation, we have∫
ω⊥

e−iξ·k

∫
R

ω · A(t, k + τω) exp

− ∞∫
0

ω · A (t, k + τω + sω)ds

 dτ

 dk = 0, for ω with |ω − ω0| ≤ ε

here dk denotes the Lebesgue measure on ω⊥. After substituting τ + s = s̃, we get∫
ω⊥

e−iξ·k

∫
R

ω · A(t, k + τω) exp

− ∞∫
τ

ω · A(t, k + s̃ω)ds̃

 dτ

 dk = 0, for ω with |ω − ω0| ≤ ε.

(6.4)

Now ∫
ω⊥

e−iξ·k

∫
R

ω · A(t, k + τω) exp

− ∞∫
τ

ω · A(t, k + s̃ω)ds̃

 dτ

 dk

=

∫
ω⊥

e−iξ·k
∫
R

∂

∂τ
exp

− ∞∫
τ

ω · A(t, k + sω)ds

 dτdk

=

∫
ω⊥

e−iξ·k

1− exp

−∫
R

ω · A(t, k + sω)ds

 dk.
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Combining this with (6.4), we get∫
R

ω · A(t, k + sω)ds = 0, for k ∈ ω⊥ with |ω − ω0| ≤ ε.

Now using the decomposition Rn = Rω ⊕ ω⊥ in the above equation, we get∫
R

ω · A(t, x+ sω)ds = 0, for x ∈ Rn with |ω − ω0| ≤ ε. (6.5)

Thus we have the ray transform of vector field A is vanishing in a very small enough neighbourhood
of fixed direction ω0. In order to get the uniqueness for vector field term A, we need to invert this
ray transform which we will do in the following lemma:

Lemma 6.1. Let n ≥ 2 and F = (F1, F2, · · · , Fn) be a real-valued time-dependent vector field with
Fj ∈ C∞c (Q) for all 1 ≤ j ≤ n. Suppose for each t ∈ (0, T ) we have

IF (t, x, ω) :=

∫
R

ω · F (t, x+ sω)ds = 0

for all ω ∈ Sn−1 with |ω − ω0| ≤ ε, for some ε > 0 and for all x ∈ Rn. Then for each t ∈ (0, T )
there exists a Φ(t, ·) ∈ C∞c (Ω) such that F (t, x) = ∇xΦ(t, x).

Proof. The proof uses the arguments similar to the one used in [44, 48, 52] for the case of light ray
transforms. We assume that t ∈ (0, T ) is arbitrary but fixed. We have the ray transform of F at
x ∈ Rn in the direction of ω ∈ Sn−1 is given by

IF (t, x, ω) =

∫
R

ω · F (t, x+ sω)ds.

Now let η := (η1, η2, · · · , ηn) ∈ Rn be arbitrary and denote ω := (ω1, ω2, · · · , ωn) ∈ Sn−1. Then we
have

(η · ∇x)IF (t, x, ω) =
n∑

i,j=1

∫
R

ωiηj∂jFi(t, x+ sω)ds. (6.6)

Since F has compact support therefore using the Fundamental theorem of calculus, we have∫
R

d

ds
(η · F )(t, x+ sω)ds = 0

which gives
n∑

i,j=1

∫
R

ωiηj∂iFj(t, x+ sω)ds = 0. (6.7)

Subtracting (6.7) from (6.6), we get
n∑

i,j=1

∫
R

ωiηjhij(t, x+ sω)ds = 0, for x ∈ Rn and ω ∈ Sn−1 near a fixed ω0 ∈ Sn−1 (6.8)

where hij is an n× n matrix with entries

hij(t, x) = (∂jFi − ∂iFj) (t, x), for 1 ≤ i, j ≤ n.
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Define the Fourier transform of
∑n

i,j=1 ω
iηjhij(t, x) with respect to space variable x by

n∑
i,j=1

ωiηjĥij(t, ξ) =
n∑

i,j=1

∫
Rn

ωiηjhij(t, x)e−iξ·xdx, ξ ∈ Rn.

Now decomposing Rn = Rω ⊕ ω⊥ and using (6.8), we get
n∑

i,j=1

ωiηjĥij(t, ξ) = 0, for all η ∈ Rn, ξ ∈ ω⊥ and ω near ω0. (6.9)

The goal is to prove that ĥij(t, ξ) = 0, for ξ ∈ ω⊥ with ω near ω0 and for each t ∈ (0, T ). From the

definition of ĥij(t, ξ), it is clear that

ĥii(t, ξ) = 0 and ĥij(t, ξ) = −ĥji(t, ξ), for 1 ≤ i, j ≤ n.

For n = 2, equation 6.9 gives us

(ω1η2 − ω2η1)ĥ12(t, ξ) = 0, for η ∈ R2, ξ ∈ ω⊥ and ω near ω0. (6.10)

Now choosing η = (ω2,−ω1) ∈ ω⊥ in (6.10), we get ĥ12(ξ) = 0. Next we show that ĥij(t, ξ) = 0
when n ≥ 3. Let {ej : 1 ≤ j ≤ n} be the standard basis for Rn where ej is is given by

ej := (0, 0, · · · , 0, 1︸︷︷︸
jth

, 0, · · · , 0)

and for simplicity we fix ω0 = e1. Now let ξ0 = e2 be a fixed vector in Rn. Our first aim is to show

that ĥij(ξ0) = 0, for all 1 ≤ i, j ≤ n, then later we will prove that ĥij(t, ξ) = 0 for 1 ≤ i, j ≤ n and
ξ near ξ0. Following [44], consider a small perturbation ω0(a) of vector ω0 = e1 by

ω0(a) := cos ae1 + sin aek where 3 ≤ k ≤ n.

Then we have ω0(a) is near ω0 for a near 0 and ξ0 · ω0(a) = 0. Hence using these choices of ω0(a)
and η = ej in(6.9), we have

cos aĥ1j(t, ξ0) + sin aĥkj(t, ξ0) = 0, for 1 ≤ j ≤ n, 3 ≤ k ≤ n and a near 0.

This gives us

ĥ1j(t, ξ0) = 0, ĥkj(t, ξ0) = 0, for 1 ≤ j ≤ n, and 3 ≤ k ≤ n.

After using the fact that ĥij = −ĥji for 1 ≤ i, j ≤ n, we get

ĥij(t, ξ0) = 0, for 1 ≤ i, j ≤ n.

Next we show that ĥij(t, ξ) = 0 for ξ ∈ ω⊥ with ω near ω0. Using the spherical co-ordinates, we
choose ξ ∈ Sn−1 as follows

ξ1 = sinφ1 cosφ2

ξ2 = cosφ1

ξ3 = sinφ1 sinφ2 cosφ3

...

ξn−1 = sinφ1 sinφ2 · · · sinφn−2 cos θ

ξn = sinφ1 sinφ2 · · · sinφn−2 sin θ.
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Let A be an orthogonal matrix such that Aξ = e2, where A is given by

A =



∂ξ1

∂φ1

∂ξ2

∂φ1

∂ξ3

∂φ1
· · · ∂ξn

∂φ1

ξ1 ξ2 ξ3 · · · ξn

a31 a32 a33 · · · a3n
...

...
...

. . .
...

ak1 ak2 ak3 · · · akn
ak+11 ak+11 ak+13 · · · ak+1n

...
...

...
. . .

...
an1 an2 an3 · · · ann


. (6.11)

Now choose

ω̃ =

(
∂ξ1

∂φ1

,
∂ξ2

∂φ1

,
∂ξ3

∂φ1

, · · · , ∂ξ
n

∂φ1

)
∈ Sn−1

then ω̃ is near ω0 = e1 when φi’s and θ are close to 0. Next choose ω0(a) = cos ae1 + sin ael with
l 6= 2, then ω0(a) is close to e1 when a is close to zero. Now define ω(a) by

ω(a) := ATω0(a) =


cos a cosφ1 cosφ2 + al1 sin a
− cos a sinφ1 + al2 sin a

...
cos a cosφ1 sinφ2 · · · sinφn−2 cos θ + aln sin a

 .

Then we have ω(a) is close ω̃ for a near 0 and ω̃ is close to ω0 when φi and θ are close to zero. Also
we can see that ω(a) · ξ = ATω0(a) · ξ = ω0(a) · Aξ = ω0(a) · e2 = 0, hold because of the choice of
ω0(a). Hence using these choices of ω(a) and choosing η = ej in (6.9), we have

cos a

(
n∑
i=1

∂ξi

∂φ1

ĥij(t, ξ)

)
+ sin a

(
n∑
i=1

aliĥij(t, ξ)

)
= 0, for1 ≤ j ≤ n and a near 0.

Now since sin a and cos a are linearly independent, therefore we get

n∑
i=1

∂ξi

∂φ1

ĥij(t, ξ) = 0, for all 1 ≤ j ≤ n

n∑
i=1

aliĥij(t, ξ) = 0, for all 1 ≤ j ≤ n and l 6= 2.

(6.12)

Above equations can be written as

∂ξ1

∂φ1

∂ξ2

∂φ1

∂ξ3

∂φ1
· · · ∂ξn

∂φ1

a31 a32 a33 · · · a3n
...

...
...

. . .
...

ak1 ak2 ak3 · · · akn
ak+1,1 ak+1,2 ak+1,3 · · · ak+1,n

...
...

...
. . .

...
an1 an2 an3 · · · ann.





ĥ1j(t, ξ)

ĥ2j(t, ξ)

ĥ3j(t, ξ)
...
...
...

ĥnj(t, ξ)


= 0. (6.13)
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Now let us define matrix B and a n-vector hj as follows:

B =



∂ξ1

∂φ1

∂ξ2

∂φ1

∂ξ3

∂φ1
· · · ∂ξn

∂φ1

a31 a32 a33 · · · a3n
...

...
...

. . .
...

ak1 ak2 ak3 · · · akn
ak+1,1 ak+1,2 ak+1,3 · · · ak+1,n

...
...

...
. . .

...
an1 an2 an3 · · · ann


and hj(t, ξ) =



ĥ1j(t, ξ)

ĥ2j(t, ξ)

ĥ3j(t, ξ)
...
...
...

ĥnj(t, ξ)


.

Using these, we have equation (6.13), can be written as

Bhj(t, ξ) = 0, for 1 ≤ j ≤ n. (6.14)

Note that the matrix B is obtained from A by removing the second row and it is (n−1)×n matrix.
From the definition of A it is clear that rank of A is n, so the rank of B is n − 1. i.e. there exists
at-least one non-zero minor of order n − 1 of the matrix B. Without loss of generality assume B′

is non-zero minor of order n− 1, where B′ is given by

B′ =



∂ξ2

∂φ1

∂ξ3

∂φ1
· · · ∂ξn

∂φ1

a32 a33 · · · a3n
...

...
. . .

...
ak2 ak3 · · · akn
ak+1,2 ak+1,3 · · · ak+1,n

...
...

. . .
...

an2 an3 · · · ann


.

Now using the fact ĥ11(t, ξ) = 0 in (6.14), we have

B′h′1(t, ξ) = 0 (6.15)

where h′1 =
(
ĥ21(t, ξ), ĥ31(t, ξ), · · · , ĥn1(t, ξ)

)T
. Since B′ has full rank therefore h′1(t, ξ) = 0. Also

using the fact ĥij(t, ξ) = −ĥji(t, ξ) and h1(t, ξ) = 0, we have

B′h′j(t, ξ) = 0, for 2 ≤ j ≤ n (6.16)

where h′j is an (n−1) vector obtained after deleting jth entry from hj. Now using (6.15) and (6.16)
in (6.14), we get

hj(t, ξ) = 0, for 1 ≤ j ≤ n

which gives us

ĥij(t, ξ) = 0, for 1 ≤ i, j ≤ n and ξ near e2.

Since ĥij are compactly supported therefore using the Paley-Wiener theorem, we have

ĥij(t, ξ) = 0, for 1 ≤ i, j ≤ n ξ ∈ Rn and t ∈ (0, T ).

Fourier inversion formula gives us hij(t, x) = 0 for x ∈ Rn and for each t ∈ (0, T ). Finally after
using the definition of hij(t, x) and the Poincaré lemma, there exists a Φ(t, ·) ∈ C∞c (Rn) such that
F (t, x) = ∇xΦ(t, x) for x ∈ Ω and for each t ∈ (0, T ). This completes the proof of Lemma 6.1. �



20 SAHOO AND VASHISTH

6.1. Proof of Theorem 2.1. Using (6.5) and the fact that A is time-independent, we have∫
R

ω · A(x+ sω)ds = 0, for x ∈ Rn with |ω − ω0| ≤ ε.

Hence using Lemma 6.1 in the above equation, there exists Φ ∈ W 2,∞
0 (Ω) such that

A(x) = ∇xΦ(x), x ∈ Ω. (6.17)

This completes the proof for recovery of convection term A(x). Next we prove the uniqueness for
the density coefficients qi(t, x) for i = 1, 2. Since from (6.17), we have A(2)(x)− A(1)(x) = ∇xΦ(x)
for some Φ ∈ W 2,∞

0 (Ω). Now if replace the pair (A(1), q1) by (A(3), q3) where A(3) = A(1) +∇xΦ and
q3 = q1 then using the fact that Φ ∈ W 2,∞

0 (Ω) and Equation (2.2), we get ΛA(3),q3 = ΛA(2),q2 . Now

repeating the previous arguments and Lemma 6.1, there exists Φ1 ∈ W 2,∞
0 (Ω) such that

A(3)(x)− A(2)(x) = ∇xΦ1(x)

which gives us A(3)(x) = A(2)(x) for x ∈ Ω. Hence using pairs (A(3), q3) and (A(2), q2) in (5.9) and
the fact that q3 = q1, we get∫

Q

q(t, x)u2(t, x)v(t, x)dxdt = −
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt

where q(t, x) := q1(t, x) − q2(t, x). Now using the expressions for u2 and v from (4.1) and (4.4)
respectively and taking λ→∞, we get∫

Q

q(t, x)e−i(τt+x·ξ)dxdt = 0, for τ ∈ R and ξ ∈ ω⊥, where ω ∈ Sn−1 is near ω0.

Since q ∈ L∞(Q) is zero outside Q therefore by using the Paley-Wiener theorem we have q1(t, x) =
q2(t, x) for (t, x) ∈ Q. This completes the proof of Theorem 2.1.

6.2. Proof of Corollary 2.2. Using Equation (6.5) and Lemma (6.1), we have for every t ∈ (0, T )
there exists Φ(t, ·) ∈ W 2,∞

0 (Ω) such that

A(2)(t, x)− A(1)(t, x) = ∇xΦ(t, x), (t, x) ∈ Q. (6.18)

Now using Equations (2.3) and (6.18), we have{
∆xΦ(t, x) = 0, x ∈ Ω and for each t ∈ (0, T )

Φ(t, x) = 0, x ∈ ∂Ω and for each t ∈ (0, T ).

Using the unique solvability for the above equation, we have Φ(t, x) = 0 for (t, x) ∈ Q. Thus from
Equation (6.18), we get A(2)(t, x) = A(1)(t, x) for (t, x) ∈ Q. Using this in (5.9) and repeating the
previous arguments, we get q1(t, x) = q2(t, x), (t, x) ∈ Q.
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